Skip to main content
Log in

Sensorimotor learning with stereo auditory feedback for a brain–computer interface

  • Original Article
  • Published:
Medical & Biological Engineering & Computing Aims and scope Submit manuscript

Abstract

Motor imagery can be used to modulate sensorimotor rhythms (SMR) enabling detection of voltage fluctuations on the surface of the scalp using electroencephalographic electrodes. Feedback is essential in learning to modulate SMR for non-muscular communication using a brain–computer interface (BCI). A BCI not reliant upon the visual modality not only releases the visual channel for other uses but also offers an attractive means of communication for the physically impaired who are also blind or vision impaired. This study demonstrates the feasibility of replacing the traditional visual feedback modality with stereo auditory feedback. Results from a pilot study were used to select the most appropriate sounds for auditory feedback based on three options: broadband noise and two anechoic instrument samples. Subsequently, an SMR BCI was used to examine the effect on sensorimotor learning with broadband noise utilising a modified stereophonic presentation method. Twenty participants split into equal groups took part in ten sessions. The visual group performed best initially but did not improve over time whilst the auditory group improved as the study progressed. The results demonstrate the feasibility of using stereophonic auditory feedback with broadband noise as opposed to other auditory feedback presentation methods and sounds which are less intuitive.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Access Economics Pty Limited (2009) Future Sight Loss UK: Economic impact of partial sight and blindness in the UK adult population

  2. Blankertz B, Dornhege G, Krauledat M, Müller KR, Curio G (2007) The non-invasive Berlin Brain-Computer Interface: fast acquisition of effective performance in untrained subjects. NeuroImage 37(2):539–550

    Article  PubMed  Google Scholar 

  3. Blankertz B, Tomioka R, Lemm S, Kawanabe M, Muller KR (2008) Optimizing spatial filters for robust EEG single-trial analysis. IEEE Signal Process Mag 25(1):41–56

    Article  Google Scholar 

  4. Blauert J (1997) Spatial hearing: the psychophysics of human sound localization. MIT Press, Cambridge

    Google Scholar 

  5. Brungart DS, Kordik AJ, Simpson BD, McKinley RL (2003) Auditory localization in the horizontal plane with single and double hearing protection. Aviat Space Environ Med 74:937–946

    PubMed  Google Scholar 

  6. Burns R (1929) Blumlein and the birth of stereo. IEE Review: 269–273

  7. Coyle D, Garcia J, Satti AR, Mcginnity TM (2011) EEG-based continuous control of a game using a 3 channel motor imagery BCI. In: 2011 IEEE Symposium on Computational Intelligence, Cognitive Algorithms, Mind, and Brain (CCMB), pp 1–7

  8. Coyle DH, Satti AR, Stow J, McCreadie K, Carroll A, McEelligott, J (2011) Operating a brain computer interface: able bodied versus physically impaired performance. In: Recent Advances in Assistive Technology and Engineering Conference, Warwich

  9. Coyle D, Prasad G, McGinnity TM (2005) A time-series prediction approach for feature extraction in a brain-computer interface. IEEE Trans Neural Systems Rehabil Eng 13:461–467

    Article  Google Scholar 

  10. Friedrich EVC, Scherer R, Sonnleitner K, Neuper C (2011) Impact of auditory distraction on user performance in a brain-computer interface driven by different mental tasks. Clin Neurophysiol 122:2003–2009

    PubMed  Google Scholar 

  11. Furdea A, Halder S, Krusienski DJ, Bross D, Nijboer F, Birbaumer N, Kübler A (2009) An auditory oddball (P300) spelling system for brain-computer interfaces. Psychophysiology 46:617–625

    Article  PubMed  CAS  Google Scholar 

  12. Guger C, Schlögl A, Neuper C, Walterspacher D, Strein T, Pfurtscheller G (2001) Rapid Prototyping of an EEG-Based Brain-Computer Interface. IEEE Trans Neural Sys Rehabil Eng 9(1):49–58

    Article  CAS  Google Scholar 

  13. Halder S, Rea M, Andreoni R, Nijboer F, Hammer EM, Kleih SC, Birbaumer N, Kübler A (2010) An auditory oddball brain–computer interface for binary choices. Clin Neurophysiols 121:516–523

    Article  CAS  Google Scholar 

  14. Hartmann WM (1983) Localization of sound in rooms. J Acoust Soc Am 74:1380–1391

    Article  PubMed  CAS  Google Scholar 

  15. Hinterberger T, Baier G (2005) Poser: parametric orchestral sonification of EEG in real-time for the self-regulation of brain states. IEEE Multimed 12:70–79

    Article  Google Scholar 

  16. Hinterberger T, Neumann N, Pham M, Kübler A, Grether A, Hofmayer N, Wilhelm B, Flor H, Birbaumer N (2004) A multimodal brain-based feedback and communication system. Exp Brain Res 154:521–526

    Article  PubMed  CAS  Google Scholar 

  17. Hinterberger T (2007) Orchestral sonification of brain signals and its application to brain-computer interfaces and performing arts. Workshop Interact Sonification, In

    Google Scholar 

  18. Horki P, Solis-Escalante T, Neuper C, Müller-Putz G (2011) Combined motor imagery and SSVEP based BCI control of a 2 DoF artificial upper limb. Med Biol Eng Comput 49:567–577

    Article  PubMed  Google Scholar 

  19. Höhne J, Schreuder M, Blankertz B, Tangermann M (2010) Two-dimensional auditory p300 speller with predictive text system. In: Annual International Conference IEEE Engineering Medicine and Biology Society, pp 4185–4188

  20. Höhne J, Schreuder M, Blankertz B, Tangermann M (2011) A novel 9-class auditory ERP paradigm driving a predictive text entry system. Front Neurosci 5:1–10

    Article  Google Scholar 

  21. Lv J, Liu M (2008) Common spatial pattern and particle swarm optimization for channel selection in BCI. In: 2008 3rd International Conference on Innovative Computing Information and Control, pp 457–457

  22. Müller-Putz GR, Scherer R, Brunner C, Leeb R, Pfurtscheller G (2008) Better than random? A closer look on BCI results. Int J Bioelectromagn 10:52–55

    Google Scholar 

  23. Nijboer F, Birbaumer N, Kübler A (2010) The influence of psychological state and motivation on brain-computer interface performance in patients with amyotrophic lateral sclerosis—a longitudinal study. Front Neurosci 4(55):1–13

    Google Scholar 

  24. Nijboer F, Furdea A, Gunst I, Mellinger J, McFarland DJ, Birbaumer N, Kübler A (2008) An auditory brain-computer interface (BCI). J Neurosci Methods 167:43–50

    Article  PubMed  Google Scholar 

  25. Nijboer F, Sellers EW, Mellinger J, Jordan MA, Matuz T, Furdea A, Halder S, Mochty U, Krusienski DJ, Vaughan TM, Wolpaw JR, Birbaumer N, Kübler A (2008) A P300-based brain-computer interface for people with amyotrophic lateral sclerosis. Clin Neurophysiol 119:1909–1916

    Article  PubMed  CAS  Google Scholar 

  26. Ohki M, Kanayama R, Nakamura T, Okuyama T, Kimura Y, Koike Y (1994) Ocular abnormalities in amyotrophic lateral sclerosis. Acta Oto-laryngologica Suppl 511:138–142

    Article  CAS  Google Scholar 

  27. Pfurtscheller G, Neuper C, Schlögl A, Lugger K (1998) Separability of EEG signals recorded during right and left motor imagery using adaptive autoregressive parameters. IEEE Trans Rehabil Eng 6(3):316–325

    Article  PubMed  CAS  Google Scholar 

  28. Pham M, Hinterberger T, Neumann N, Kübler A, Hofmayer N, Grether A, Wilhelm B, Vatine JJ, Birbaumer N (2005) An auditory brain-computer interface based on the self-regulation of slow cortical potentials. Neurorehabilitation Neural Repair 19:206–218

    Article  PubMed  Google Scholar 

  29. Pulkki V (2002) Compensating displacement of amplitude-panned virtual sources. In: AES 22nd International Conference, pp 186–195

  30. Rutkowski TM, Tanaka T, Zhao Q, Cichocki A (2010) Spatial auditory BCI/BMI paradigm-multichannel EMD approach to brain responses estimation. In: APSIPA Annual Summit and Conference, pp 197–202

  31. Sannelli C, Dickhaus T, Halder S, Hammer E-M, Müller K-R, Blankertz B (2010) On optimal channel configurations for SMR-based brain-computer interfaces. Brain Topogr 23:186–193

    Article  PubMed  Google Scholar 

  32. Satti A, Guan C, Coyle D, Prasad G (2010) A covariate shift minimisation method to alleviate non-stationarity effects for an adaptive brain-computer interface. In: 20th International Conference on Pattern Recognition, pp 105–108

  33. Schreuder M, Blankertz B, Tangermann M (2010) A new auditory multi-class brain-computer interface paradigm: spatial hearing as an informative cue. PLoS ONE 5(4):e9813

    Article  PubMed  Google Scholar 

  34. Stow J, Coyle D, Carroll A, Satti A, McElligott J (2011) Achievable brain computer communication through short intensive motor imagery training despite long term spinal cord injury. In: Annual IICN Registrar’s Prize in Neuroscience

  35. Velasco-Álvarez F, Ron-Angevin R, da Silva-Sauer L, Sancha-Ros S, Blanca-Mena M, Cabestany J, Rojas I, Joya G (2011) Audio-cued SMR brain-computer interface to drive a virtual wheelchair. Adv Comput Intell 6691:337–344

    Google Scholar 

  36. Vidaurre C, Blankertz B (2010) Towards a cure for BCI illiteracy. Brain Topogr 23(2):194–198

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This research is supported by the Intelligent Systems Research Centre (ISRC), Department for Employment and Learning Northern Ireland (DELNI) and the UK Engineering and Physical Sciences Research Council (EPSRC) (project no. EP/H012958/1). All participants are also kindly thanked for their time and effort.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karl A. McCreadie.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material (DOC 40 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

McCreadie, K.A., Coyle, D.H. & Prasad, G. Sensorimotor learning with stereo auditory feedback for a brain–computer interface. Med Biol Eng Comput 51, 285–293 (2013). https://doi.org/10.1007/s11517-012-0992-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11517-012-0992-7

Keywords

Navigation