Skip to main content
Log in

Development and validation of a pressure-type automated quantitative sensory testing system for point-of-care pain assessment

  • Original Article
  • Published:
Medical & Biological Engineering & Computing Aims and scope Submit manuscript

Abstract

Quantitative sensory testing (QST) can provide useful information about the underlying mechanisms involved in chronic pain. However, currently available devices typically employed suffer from operator-dependent effects, or are too cumbersome for routine clinical care. This paper presents the design and initial validation of a novel automated pressure-pain type QST platform, termed the multi-modal automated sensory testing (MAST) system. The MAST configuration presented consists of wireless, hand-held thumbnail pressure stimulators (with circular 10 mm2 rubber tips) and graphical touch screen interface devices to manage the QST process and obtain patient feedback. Validation testing of the custom-designed force sensor showed a 1 % error for low forces increasing to 2 % error for larger loads up to 100 N (full-scale). Validation of the controller using three ramp rates (64, 248, and 496 kPa/s) and six pressures (32, 62, 124, 273, 620, and 1116 kPa) showed an overall mean error of 1.7 % for applied stimuli. Clinical evaluation revealed decreased pressure pain thresholds in chronic pain patients (98.07 ± SE 16.34 kPa) compared to pain free, healthy control subjects (259.88 ± SE 33.54 kPa, p = 0.001). The MAST system is portable and produces accurate, repeatable stimulation profiles indicating potential for point-of-care applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Arendt-Nielsen L, Yarnitsky D (2009) Experimental and clinical applications of quantitative sensory testing applied to skin, muscles and viscera. J Pain 10(6):556–572

    Article  PubMed  Google Scholar 

  2. Cathcart S, Winefield AH, Rolan P, Lushington K (2009) Reliability of temporal summation and diffuse noxious inhibitory control. Pain Res Manag 14(6):433–438

    PubMed  CAS  Google Scholar 

  3. Chesterton LS, Sim J, Wright CC, Foster NE (2007) Interrater reliability of algometry in measuring pressure pain thresholds in healthy humans, using multiple raters. Clin J Pain 23(760):760–766

    Article  PubMed  Google Scholar 

  4. Clauw DJ (2009) Fibromyalgia: an overview. Am J Med 122(12 Suppl):S3–S13

    Article  PubMed  Google Scholar 

  5. Coronado RA, Kindler LL, Valencia C, George SZ (2011) Thermal and pressure pain sensitivity in patients with unilateral shoulder pain: comparison of involved and uninvolved sides. J Orthop Sports Phys Ther 41(3):165–173

    PubMed  Google Scholar 

  6. Diatchenko L, Slade GD, Nackley AG, Bhalang K, Sigurdsson A, Belfer I, Goldman D, Xu K, Shabalina SA, Shagin D, Max MB, Makarov SS, Maixner W (2005) Genetic basis for individual variations in pain perception and the development of a chronic pain condition. Hum Mol Genet 14(1):135–143

    Article  PubMed  CAS  Google Scholar 

  7. Dyck PJ, Zimmerman IR, O’Brien PC, Ness A, Caskey PE, Karnes J, Bushek W (1978) Introduction of automated systems to evaluate touch-pressure, vibration, and thermal cutaneous sensation in man. Ann Neurol 4(6):502–510

    Article  PubMed  CAS  Google Scholar 

  8. Edwards RR, Sarlani E, Wesselmann U, Fillingim RB (2005) Quantitative assessment of experimental pain perception: multiple domains of clinical relevance. Pain 114(3):315–319

    Article  PubMed  Google Scholar 

  9. Eisenberg E, Midbari A, Haddad M, Pud D (2010) Predicting the analgesic effect to oxycodone by ‘static’ and ‘dynamic’ quantitative sensory testing in healthy subjects. Pain 151(1):104–109

    Article  PubMed  CAS  Google Scholar 

  10. Finocchietti S, Nielsen M, Morch CD, Arendt-Nielsen L, Graven-Nielsen T (2011) Pressure-induced muscle pain and tissue biomechanics: a computational and experimental study. Eur J Pain 15(1):36–44

    Article  PubMed  Google Scholar 

  11. Geisser ME, Gracely RH, Giesecke T, Petzke FW, Williams DA, Clauw DJ (2007) The association between experimental and clinical pain measures among persons with fibromyalgia and chronic fatigue syndrome. Eur J Pain 11(2):202–207

    Article  PubMed  Google Scholar 

  12. Geisser ME, Glass JM, Rajcevska LD, Clauw DJ, Williams DA, Kileny PR, Gracely RH (2008) A psychophysical study of auditory and pressure sensitivity in patients with fibromyalgia and healthy controls. J Pain 9(5):417–422

    Article  PubMed  Google Scholar 

  13. Giesecke T, Gracely RH, Williams DA, Geisser ME, Petzke FW, Clauw DJ (2005) The relationship between depression, clinical pain, and experimental pain in a chronic pain cohort. Arthr Rheum 52(5):1577–1584

    Article  Google Scholar 

  14. Gordon CC, Churchill T, Clauser CE, Bradtmiller CB, McConville JT, Tebbetts I, Walker RA (1989) 1988 Anthropometric survey of U.S. army personnel: methods and summary statistics. United States Army Natick Research, Development and Engineering Center, Natick

  15. Gracely RH, Lota L, Walter DJ, Dubner R (1988) A multiple random staircase method of psychophysical pain assessment. Pain 32(1):55–63

    Article  PubMed  CAS  Google Scholar 

  16. Gracely RH, Petzke F, Wolf JM, Clauw DJ (2002) Functional magnetic resonance imaging evidence of augmented pain processing in fibromyalgia. Arthr Rheum 46(5):1333–1343

    Article  Google Scholar 

  17. Gracely RH, Grant MA, Giesecke T (2003) Evoked pain measures in fibromyalgia. Best Pract Res CL Rh 17(4):593–609

    Article  Google Scholar 

  18. Granges G, Littlejohn G (1993) Pressure pain threshold in pain-free subjects, in patients with chronic regional pain syndromes, and in patients with fibromyalgia syndrome. Arthr Rheum 36(5):642–646

    Article  CAS  Google Scholar 

  19. Granot M (2009) Can we predict persistent postoperative pain by testing preoperative experimental pain? Curr Opin Anaesthesiol 22(3):425–430

    Article  PubMed  Google Scholar 

  20. Greenspan JD, Slade GD, Bair E, Dubner R, Fillingim RB, Ohrbach R, Knott C, Mulkey F, Rothwell R, Maixner W (2011) Pain sensitivity risk factors for chronic TMD: descriptive data and empirically identified domains from the OPPERA case control study. J Pain 12(11 Suppl):T61–T74

    PubMed  Google Scholar 

  21. Gruener G, Dyck PJ (1994) Quantitative sensory testing: methodology, applications, and future directions. J Clin Neurophysiol 11(6):568–583

    Article  PubMed  CAS  Google Scholar 

  22. Hansson P, Backonja M, Bouhassira D (2007) Usefulness and limitations of quantitative sensory testing: clinical and research application in neuropathic pain states. Pain 129(3):256–259

    Article  PubMed  Google Scholar 

  23. Harris RE, Gracely RH, McLean SA, Williams DA, Giesecke T, Petzke F, Sen A, Clauw DJ (2006) Comparison of clinical and evoked pain measures in fibromyalgia. J Pain 7(7):521–527

    Article  PubMed  Google Scholar 

  24. Harris RE, Sundgren PC, Pang Y, Hsu M, Petrou M, Kim SH, McLean SA, Gracely RH, Clauw DJ (2008) Dynamic levels of glutamate within the insula are associated with improvements in multiple pain domains in fibromyalgia. Arthr Rheum 58(3):903–907

    Article  CAS  Google Scholar 

  25. Harris RE, Sundgren PC, Craig AD, Kirshenbaum E, Sen A, Napadow V, Clauw DJ (2009) Elevated insular glutamate in fibromyalgia is associated with experimental pain. Arthr Rheum 60(10):3146–3152

    Article  CAS  Google Scholar 

  26. Hollins M, Harper D, Gallagher S, Owings EW, Lim PF, Miller V, Siddiqi MQ, Maixner W (2009) Perceived intensity and unpleasantness of cutaneous and auditory stimuli: an evaluation of the generalized hypervigilance hypothesis. Pain 141(3):215–221

    Article  PubMed  Google Scholar 

  27. Institute of Medicine (2011) Relieving pain in America: a blueprint for transforming prevention, care, education, and research. The National Academies Press, Washington, DC

    Google Scholar 

  28. Jensen K, Andersen HO, Olesen J, Lindblom U (1986) Pressure-pain threshold in human temporal region. Evaluation of a new pressure algometer. Pain 25(3):313–323

    Article  PubMed  CAS  Google Scholar 

  29. Johansson RS, Vallbo AB (1979) Tactile sensibility in the human hand: relative and absolute densities of four types of mechanoreceptive units in glabrous skin. J Physiol 286:283–300

    PubMed  CAS  Google Scholar 

  30. Kallai I, Barke A, Voss U (2004) The effects of experimenter characteristics on pain reports in women and men. Pain 112(1–2):142–147

    Article  PubMed  Google Scholar 

  31. Keele KD (1954) Pain-sensitivity tests; the pressure algometer. Lancet 266(6813):636–639

    Article  PubMed  CAS  Google Scholar 

  32. Kehlet H, Jensen TS, Woolf CJ (2006) Persistent postsurgical pain: risk factors and prevention. Lancet 367(9522):1618–1625

    Article  PubMed  Google Scholar 

  33. Kindler LL, Bennett RM, Jones KD (2011) Central sensitivity syndromes: mounting pathophysiologic evidence to link fibromyalgia with other common chronic pain disorders. Pain Manag Nurs 12(1):15–24

    Article  PubMed  Google Scholar 

  34. Kosek E, Ekholm J, Nordemar R (1993) A comparison of pressure pain thresholds in different tissues and body regions. Long-term reliability of pressure algometry in healthy volunteers. Scan. J Rehabil Med 25(3):117–124

    CAS  Google Scholar 

  35. Kupers R, Lonsdale MN, Aasvang E, Kehlet H (2011) A positron emission tomography study of wind-up pain in chronic postherniotomy pain. Eur J Pain 15(7):698 e691–616

    Google Scholar 

  36. Landau R, Kraft JC, Flint LY, Carvalho B, Richebe P, Cardoso M, Lavand’homme P, Granot M, Yarnitsky D, Cahana A (2010) An experimental paradigm for the prediction of Post-Operative Pain (PPOP). J Vis Exp (35): n/a

  37. Levine FM, DeSimon LL (1991) The effects of experimenter gender on pain report in male and female subjects. Pain 44(1):69–72

    Article  PubMed  CAS  Google Scholar 

  38. Nahman-Averbuch H, Yarnitsky D, Granovsky Y, Sprecher E, Steiner M, Tzuk-Shina T, Pud D (2011) Pronociceptive pain modulation in patients with painful chemotherapy-induced polyneuropathy. J Pain Symptom Manag 42(2):229–238

    Article  Google Scholar 

  39. Neziri AY, Curatolo M, Nuesch E, Scaramozzino P, Andersen OK, Arendt-Nielsen L, Juni P (2011) Factor analysis of responses to thermal, electrical, and mechanical painful stimuli supports the importance of multi-modal pain assessment. Pain 152(5):1146–1155

    Article  PubMed  Google Scholar 

  40. Nie H, Arendt-Nielsen L, Andersen H, Graven-Nielsen T (2005) Temporal summation of pain evoked by mechanical stimulation in deep and superficial tissue. J Pain 6(6):348–355

    Article  PubMed  Google Scholar 

  41. Overduin SA, Servos P (2004) Distributed digit somatotopy in primary somatosensory cortex. Neuroimage 23(2):462–472

    Article  PubMed  Google Scholar 

  42. Persson AL, Brogardh C, Sjolund BH (2004) Tender or not tender: test-retest repeatability of pressure pain thresholds in the trapezius and deltoid muscles of healthy women. J Rehabil Med 36(1):17–27

    Article  PubMed  Google Scholar 

  43. Petzke F, Khine A, Williams D, Groner K, Clauw DJ, Gracely RH (2001) Dolorimetry performed at 3 paired tender points highly predicts overall tenderness. J Rheumatol 28(11):2568–2569

    PubMed  CAS  Google Scholar 

  44. Petzke F, Clauw DJ, Ambrose K, Khine A, Gracely RH (2003) Increased pain sensitivity in fibromyalgia: effects of stimulus type and mode of presentation. Pain 105(3):403–413

    Article  PubMed  Google Scholar 

  45. Petzke F, Gracely RH, Park KM, Ambrose K, Clauw DJ (2003) What do tender points measure? Influence of distress on 4 measures of tenderness. J Rheumatol 30(3):567–574

    PubMed  Google Scholar 

  46. Petzke F, Harris RE, Williams DA, Clauw DJ, Gracely RH (2005) Differences in unpleasantness induced by experimental pressure between patients with fibromyalgia and controls. Eur J Pain 9:325–335

    Article  PubMed  Google Scholar 

  47. Rainwater AJ, McNeil DW (1991) Reinventing the algometer: synopsis of the literature and presentation of a reliable, inexpensive model. Behav Res Meth Ins C 24(4):486–492

    Article  Google Scholar 

  48. Sand T, Zwart JA, Helde G, Bovim G (1997) The reproducibility of cephalic pain pressure thresholds in control subjects and headache patients. Cephalalgia 17(7):748–755

    Article  PubMed  CAS  Google Scholar 

  49. Song GH, Venkatraman V, Ho KY, Chee MWL, Yeoh KG, Wilder-Smith CH (2006) Cortical effects of anticipation and endogenous modulation of visceral pain assessed by functional brain MRI in irritable bowel syndrome patients and healthy controls. Pain 126(1–3):79–90

    Article  PubMed  Google Scholar 

  50. Svensson P, List T, Hector G (2001) Analysis of stimulus-evoked pain in patients with myofascial temporomandibular pain disorders. Pain 92(3):399–409

    Article  PubMed  CAS  Google Scholar 

  51. Treede RD, Rolke R, Andrews K, Magerl W (2002) Pain elicited by blunt pressure: neurobiological basis and clinical relevance. Pain 98(3):235–240

    Article  PubMed  Google Scholar 

  52. Weissman-Fogel I, Granovsky Y, Crispel Y, Ben-Nun A, Best LA, Yarnitsky D, Granot M (2009) Enhanced presurgical pain temporal summation response predicts post-thoracotomy pain intensity during the acute postoperative phase. J Pain 10(6):628–636

    Article  PubMed  Google Scholar 

  53. Wilbarger JL, Cook DB (2011) Multisensory hypersensitivity in women with fibromyalgia: implications for well being and intervention. Arch Phys Med Rehabil 92(4):653–656

    Article  PubMed  Google Scholar 

  54. Wolfe F, Clauw DJ, Fitzcharles MA, Goldenberg DL, Hauser W, Katz RS, Mease P, Russell AS, Russell IJ, Winfield JB (2011) Fibromyalgia criteria and severity scales for clinical and epidemiological studies: a modification of the ACR Preliminary Diagnostic Criteria for Fibromyalgia. J Rheumatol 38(6):1113–1122

    Article  PubMed  Google Scholar 

  55. Yarnitsky D (2010) Conditioned pain modulation (the diffuse noxious inhibitory control-like effect): its relevance for acute and chronic pain states. Curr Opin Anaesthesiol 23(5):611–615

    Article  PubMed  Google Scholar 

  56. Yarnitsky D, Granot M, Nahman-Averbuch H, Khamaisi M, Granovsky Y (2012) Conditioned pain modulation predicts duloxetine efficacy in painful diabetic neuropathy. Pain 153(6):1193–1198

    Article  PubMed  CAS  Google Scholar 

  57. Ylinen J, Nykanen M, Kautiainen H, Hakkinen A (2007) Evaluation of repeatability of pressure algometry on the neck muscles for clinical use. Man Ther 12(2):192–197

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The authors acknowledge University of Michigan Engineering Translational Research (ETR) Fund for providing partial development support and NIH U01 DK082345.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Grant H. Kruger.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 139 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Harte, S.E., Mitra, M., Ichesco, E.A. et al. Development and validation of a pressure-type automated quantitative sensory testing system for point-of-care pain assessment. Med Biol Eng Comput 51, 633–644 (2013). https://doi.org/10.1007/s11517-013-1033-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11517-013-1033-x

Keywords

Navigation