Skip to main content

Advertisement

Log in

Non-parametric and integrated framework for segmenting and counting neuroblastic cells within neuroblastoma tumor images

  • Original Article
  • Published:
Medical & Biological Engineering & Computing Aims and scope Submit manuscript

Abstract

Neuroblastoma is a malignant tumor and a cancer in childhood that derives from the neural crest. The number of neuroblastic cells within the tumor provides significant prognostic information for pathologists. An enormous number of neuroblastic cells makes the process of counting tedious and error-prone. We propose a user interaction-independent framework that segments cellular regions, splits the overlapping cells and counts the total number of single neuroblastic cells. Our novel segmentation algorithm regards an image as a feature space constructed by joint spatial-intensity features of color pixels. It clusters the pixels within the feature space using mean-shift and then partitions the image into multiple tiles. We propose a novel color analysis approach to select the tiles with similar intensity to the cellular regions. The selected tiles contain a mixture of single and overlapping cells. We therefore also propose a cell counting method to analyse morphology of the cells and discriminate between overlapping and single cells. Ultimately, we apply watershed to split overlapping cells. The results have been evaluated by a pathologist. Our segmentation algorithm was compared against adaptive thresholding. Our cell counting algorithm was compared with two state of the art algorithms. The overall cell counting accuracy of the system is 87.65 %.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Al-Kofahi Y, Lassoued W, Lee W, Roysam B (2010) Improved automatic detection and segmentation of cell nuclei in histopathology images. IEEE Trans Biomed Eng 57(4):841–852

    Article  PubMed  Google Scholar 

  2. Borgefors G (1986) Distance transformations in digital images. IEEE Trans Pattern Anal Mach Intell 34(3):344–371

    Google Scholar 

  3. Carletta J (1996) Squibs and discussions assessing agreement on classification tasks: the Kappa statistic. Comput linguist 22(2):249–254

    Google Scholar 

  4. Coelho LP, Shariff A, Murphy RF (2009) Nuclear segmentation in microscope cell images: a hand-segmented dataset and comparison of algorithms. In: IEEE international symposium on biomedical imaging, pp 518–21

  5. Comaniciu D, Meer P (2002) Mean shift: a robust approach toward feature space analysis. IEEE Trans Pattern Anal Mach Intell 24(5):603–619

    Article  Google Scholar 

  6. Dorini LB, Minetto R, Leite NJ (2007) White blood cell segmentation using morphological operators and scale-space analysis. In: IEEE symposium on computer graphics and image processing, Brazil, pp 294–304

  7. Fox H (2000) Is H&E morphology coming to an end? J Clin Pathol 53(1):38–40

    Article  PubMed  CAS  Google Scholar 

  8. Gonzalez RC, Woods RE, Eddins SL (2004) Digital Image Processing using MATLAB. Prentice Hall, Upper Saddle River, New Jersey, pp 13–15

  9. Haralick RM, Sternberg SR, Zhuang X (1987) Image analysis using mathematical morphology. IEEE Trans Pattern Anal Mach Intell 4:532–550

    Article  Google Scholar 

  10. Heckbert P (1982) Color image quantization for frame buffer display. ACM, pp 297–303

  11. Holm S (1979) A simple sequentially rejective multiple test procedure. Scand J Stat 6(2):65–70

    Google Scholar 

  12. Kim Y, Kim JJ, Won Y, In Y (2003) Segmentation of protein spots in 2D gel electrophoresis images with watersheds using hierarchical threshold. In: Cevat YAS (eds) computer and information sciences-ISCIS, Springer, Hidelberg, pp 389–96

  13. Kong H, Gurcan M, Belkacem-Boussaid K (2011) Partitioning histopathological Images: an integrated framework for supervised color-texture segmentation and cell splitting. IEEE Trans Med Imaging 30(9):1661–1677

    Article  PubMed  Google Scholar 

  14. Lezoray O, Cardot H (2002) Cooperation of color pixel classification schemes and color watershed: a study for microscopic images. IEEE Trans Image Process 11(7):783–789

    Article  PubMed  Google Scholar 

  15. Li C, Xu C, Gui C, Fox MD (2005) Level set evolution without re-initialization: a new variational formulation. In: IEEE computer society conference on computer vision and pattern recognition, San Diego, California, pp 430–6

  16. Lovell DP, Omori T (2008) Statistical issues in the use of the comet assay. Mutagenesis 23(3):171–182

    Article  PubMed  CAS  Google Scholar 

  17. Madhloom H, Kareem S, Ariffin H, Zaidan A, Alanazi H, Zaidan B (2010) An automated white blood cell nucleus localization and segmentation using image arithmetic and automatic threshold. J Appl Sci 10(11):959–966

    Article  Google Scholar 

  18. Mahalanobis PC (1936) On the generalized distance in statistics. In: proceedings of the national institute of science of India, New Delhi, pp 49–55

  19. Malpica N, Ortiz de Solorzano C, Vaquero JJ, Santos A, Vallcorba I, Garcia-Sagredo JM, Del Pozo F (1997) Applying watershed algorithms to the segmentation of clustered nuclei. J Cytometry 28(4):289–297

    Article  CAS  Google Scholar 

  20. Massey FJ Jr (1951) The Kolmogorov–Smirnov test for goodness of fit. J Amer Statist Assoc 46(253):68–78

    Article  Google Scholar 

  21. Naik S, Doyle S, Agner S, Madabhushi A, Feldman M, Tomaszewski J (2008) Automated gland and nuclei segmentation for grading of prostate and breast cancer histopathology. In: IEEE international symposium on biomedical imaging, France, pp 284–7

  22. Otsu N (1975) A threshold selection method from gray-level histograms. IEEE Transact Syst 11:285–296

    Google Scholar 

  23. Park JR, Eggert A, Caron H (2008) Neuroblastoma: biology, prognosis, and treatment. Hematol Oncol Clin North Am 24(1):65–86

    Article  Google Scholar 

  24. Paschos G (2001) Perceptually uniform color spaces for color texture analysis: an empirical evaluation. IEEE Trans Image Process 10(6):932–937

    Article  Google Scholar 

  25. Qualman SJ, Coffin CM, Newton WA, Hojo H, Triche TJ, Parham DM, Crist WM (1998) Intergroup Rhabdomyosarcoma study: update for pathologists. Pediatr Dev Pathol 1(6):550–561

    Article  PubMed  CAS  Google Scholar 

  26. Roscie J (2004) Ackerman’s surgical pathology, 10 edn. St. Louis, New York, pp 1070–73

  27. Sansone M, Zeni O, Esposito G (2012) Automated segmentation of comet assay images using Gaussian filtering and fuzzy clustering. J Med Biol Eng Comput 50:1–10

    Article  Google Scholar 

  28. Shafarenko L, Petrou M, Kittler J (1997) Automatic watershed segmentation of randomly textured color images. IEEE Trans Image Process 6(11):1530–1544

    Article  PubMed  CAS  Google Scholar 

  29. Shen DF, Huang MT (2003) A watershed-based image segmentation using JND property. In: IEEE international conference on acoustics, speech and signal processing, pp 377–80

  30. Shimada H, Ambors M, Dehner LP, Hata JI, Joshi VV, Roald B (1999) Terminology and morphologic criteria of neuroblastic tumors. Recommendations by the International Neuroblastoma Pathology Committee Cancer 86:349–63

  31. Teot LA, Sposto R, Khayat A, Qualman S, Reaman G, Parham D (2007) The problems and promise of central pathology review: development of a standardized procedure for the children’s oncology group. Pediatr Dev Pathol 10(3):199–207

    Article  PubMed  Google Scholar 

  32. Wu HS, Berba J, Gil J (2000) Iterative thresholding for segmentation of cells from noisy images. J Microsc 197(3):296–304

    Article  PubMed  CAS  Google Scholar 

  33. Zhang YJ (1996) A survey on evaluation methods for image segmentation. Pattern Recogn 29(8):1335–1346

    Article  Google Scholar 

  34. Zhou X, Li F, Yan J, Wong STC (2009) A novel cell segmentation method and cell phase identification using Markov model. IEEE Trans Inf Technol Biomed 13(2):152–157

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Siamak Tafavogh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tafavogh, S., Navarro, K.F., Catchpoole, D.R. et al. Non-parametric and integrated framework for segmenting and counting neuroblastic cells within neuroblastoma tumor images. Med Biol Eng Comput 51, 645–655 (2013). https://doi.org/10.1007/s11517-013-1034-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11517-013-1034-9

Keywords

Navigation