Skip to main content
Log in

Fully coupled fluid–structure interaction model of congenital bicuspid aortic valves: effect of asymmetry on hemodynamics

  • Original Article
  • Published:
Medical & Biological Engineering & Computing Aims and scope Submit manuscript

Abstract

A bicuspid aortic valve (BAV) is a congenital cardiac disorder where the valve consists of only two cusps instead of three, as in a normal tricuspid valve (TAV). Although 97 % of BAVs include asymmetric cusps, little or no prior studies have investigated the blood flow through a three-dimensional BAV and root. The aim of the present study was to characterize the effect of asymmetric BAV on the blood flow using fully coupled fluid–structure interaction (FSI) models with improved boundary conditions and tissue properties. This study presents four FSI models, including a native TAV, asymmetric BAVs with or without a raphe, and an almost symmetric BAV. Cusp tissue is composed of hyperelastic finite elements with collagen fibres embedded in the elastin matrix. A full cardiac cycle is simulated by imposing the same physiological blood pressures for all the TAV and BAV models. The latter have significantly smaller opening areas compared with the TAV. Larger stress values were found in the cusps of BAVs with fused cusps, at both the systolic and diastolic phases. The asymmetric geometry caused asymmetric vortices and much larger flow shear stress on the cusps which could be a potential initiator for early valvular calcification of BAVs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Balachandran K, Sucosky P, Yoganathan AP (2011) Hemodynamics and mechanobiology of aortic valve inflammation and calcification. Int J Inflamm. doi:10.4061/2011/263870

    Google Scholar 

  2. Barker AJ, Lanning C, Shandas R (2010) Quantification of hemodynamic wall shear stress in patients with bicuspid aortic valve using phase-contrast MRI. Ann Biomed Eng 38:788–800

    Article  PubMed  Google Scholar 

  3. Bellhouse BJ (1969) Velocity and pressure distributions in the aortic valve. J Fluid Mech 37:587–600

    Article  Google Scholar 

  4. Borazjani I, Iman G, Sotiropoulos F (2010) High-resolution fluid–structure interaction simulations of flow through a bi-leaflet mechanical heart valve in an anatomic aorta. Ann Biomed Eng 38:326–344

    Article  PubMed  Google Scholar 

  5. Braverman AC, Güven H, Beardslee MA, Makan M, Kates AM, Moon MR (2005) The bicuspid aortic valve. Curr Probl Cardiol 30:470–522

    Article  PubMed  Google Scholar 

  6. Chandran KB, Vigmostad SC (2013) Patient-specific bicuspid valve dynamics: overview of methods and challenges. J Biomech 46:208–216

    Article  PubMed  Google Scholar 

  7. Chandra S, Rajamannan N, Sucosky P (2012) Computational assessment of bicuspid aortic valve wall-shear stress: implications for calcific aortic valve disease. Biomech Model Mechanobiol 11:1085–1096

    Article  PubMed  Google Scholar 

  8. Conti CA, Della Corte A, Votta E, Del Viscovo L, Bancone C, De Santo LS, Redaelli A (2010) Biomechanical implications of the congenital bicuspid aortic valve: a finite element study of aortic root function from in vivo data. J Thorac Cardiovasc Surg 140:890–896

    Article  PubMed  Google Scholar 

  9. Faggiano E, Antiga L, Puppini G, Quarteroni A, Luciani GB, and Vergara C (2012) Helical flows and asymmetry of blood jet in dilated ascending aorta with normally functioning bicuspid valve. Biomech. Model. Mechanobiol, doi:10.1007/s10237-012-0444-1

  10. Gundiah N, Kam K, Matthews PB, Guccione J, Dwyer HA, Saloner D, Chuter TA, Guy TS, Ratcliffe MB, Tseng EE (2008) Asymmetric mechanical properties of porcine aortic sinuses. Ann Thorac Surg 85:1631–1638

    Article  PubMed  Google Scholar 

  11. Gundiah N, Matthews PB, Karimi R, Azadani A, Guccione J, Guy TS, Saloner D, Tseng EE (2008) Significant material property differences between the porcine ascending aorta and aortic sinuses. J Heart Valve Dis 17:606–613

    PubMed  Google Scholar 

  12. Haj-Ali R, Marom G, Ben Zekry S, Rosenfeld M, Raanani E (2012) A general three-dimensional parametric geometry of the native aortic valve and root for biomechanical modeling. J Biomech 45:2392–2397

    Article  PubMed  Google Scholar 

  13. Hong T, Kim CN (2011) A numerical analysis of the blood flow around the bileaflet mechanical heart valves with different rotational implantation angles. J Hydrodyn Ser B 23:607–614

    Article  Google Scholar 

  14. Jermihov P, Jia L, Sacks MS, Gorman R, Gorman J, Chandran K (2011) Effect of geometry on the leaflet stresses in simulated models of congenital bicuspid aortic valves. Cardiovasc Eng Technol 2:48–56

    Article  PubMed  Google Scholar 

  15. Katayama S, Umetani N, Hisada T, Sugiura S (2012) Bicuspid aortic valves undergo excessive strain during opening: a simulation study. J Thorac Cardiovasc Surg. doi:10.1016/j.jtcvs.2012.05.032

    PubMed  Google Scholar 

  16. Kim HS (2009) Nonlinear multi-scale anisotropic material and structural models for prosthetic and native aortic heart valves. PhD thesis, Georgia Institute of Technology, Atlanta, GA, USA

  17. Marom G, Haj-Ali R, Raanani E, Schäfers HJ, Rosenfeld M (2012) A fluid-structure interaction model of coaptation in fully compliant aortic valves. Med Biol Eng Comput 50:173–182

    Article  PubMed  Google Scholar 

  18. Missirlis YF, Chong M (1978) Aortic valve mechanics—part 1: material properties of natural porcine aortic valves. J Bioengrg 2:287–300

    CAS  Google Scholar 

  19. Richards KE, Deserranno D, Donal E, Greenberg NL, Thomas JD, Garcia MJ (2004) Influence of structural geometry on the severity of bicuspid aortic stenosis. Am J Physiol Heart Circ Physiol 287:H1410–H1416

    Article  PubMed  CAS  Google Scholar 

  20. Robicsek F, Thubrikar MJ, Cook JW, Fowler B (2004) The congenitally bicuspid aortic valve: how does it function? why does it fail? Ann Thorac Surg 77:177–185

    Article  PubMed  Google Scholar 

  21. Saikrishnan N, Yap CH, Milligan NC, Vasilyev NV, Yoganathan AP (2012) In vitro characterization of bicuspid aortic valve hemodynamics using particle image velocimetry. Ann Biomed Eng 40:1760–1775

    Article  PubMed  Google Scholar 

  22. Sun L, Chandra S, and Sucosky P (2012) Ex vivo evidence for the contribution of hemodynamic shear stress abnormalities to the early pathogenesis of calcific bicuspid aortic valve disease. PLoS one 7: e48843

  23. Thubrikar M (1990) The Aortic Valve. Boca Raton, FL, USA: CRC Press, pp 91–92, 158-160

  24. Vergara C, Viscardi F, Antiga L, Luciani GB (2012) Influence of bicuspid valve geometry on ascending aortic fluid dynamics: a parametric study. Artif Organs 36:368–378

    Article  PubMed  Google Scholar 

  25. Viscardi F, Vergara C, Antiga L, Merelli S, Veneziani A, Puppini G, Faggian G, Mazzucco A, Luciani GB (2010) Comparative finite element model analysis of ascending aortic flow in bicuspid and tricuspid aortic valve. Artif Organs 34:1114–1120

    Article  PubMed  Google Scholar 

  26. Wang SH, Lee LP, Lee JS (2001) A linear relation between the compressibility and density of blood. J Acoust Soc Am 109:390–396

    Article  PubMed  CAS  Google Scholar 

  27. Weiler M, Yap CH, Balachandran K, Padala M, Yoganathan AP (2011) Regional analysis of dynamic deformation characteristics of native aortic valve leaflets. J Biomech 44:1459–1465

    Article  PubMed  Google Scholar 

  28. Weinberg EJ, Mofrad MRK (2008) A multiscale computational comparison of the bicuspid and tricuspid aortic valves in relation to calcific aortic stenosis. J Biomech 41:3482–3487

    Article  PubMed  Google Scholar 

  29. Weston MW, LaBorde DV, Yoganathan AP (1999) Estimation of the shear stress on the surface of an aortic valve leaflet. Ann Biomed Eng 27:572–579

    Article  PubMed  CAS  Google Scholar 

  30. Yap CH, Saikrishnan N, Tamilselvan G, Vasiliyev NV, Yoganathan AP (2012) The congenital bicuspid aortic valve can experience high frequency unsteady shear stresses on its leaflet surface. Am J Physiol Heart Circul Physiol 303:H721–H731

    Article  CAS  Google Scholar 

  31. Yap CH, Saikrishnan N, Tamilselvan T, Yoganathan AP (2012) Experimental measurement of dynamic fluid shear stress on the aortic surface of the aortic valve leaflet. Biomech Model Mechanobiol 11:171–182

    Article  PubMed  Google Scholar 

  32. Yap CH, Saikrishnan N, Yoganathan AP (2012) Experimental measurement of dynamic fluid shear stress on the ventricular surface of the aortic valve leaflet. Biomech Model Mechanobiol 11:231–244

    Article  PubMed  Google Scholar 

  33. Yoganathan A, Chandran K, Sotiropoulos F (2005) Flow in prosthetic heart valves: state-of-the-art and future directions. Ann Biomed Eng 33:1689–1694

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work was partially supported by a grant from the Nicholas and Elizabeth Slezak Super Center for Cardiac Research and Biomedical Engineering at Tel Aviv University. Rami Haj-Ali acknowledges the support from the EU Marie-Curie IRG grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gil Marom.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Marom, G., Kim, HS., Rosenfeld, M. et al. Fully coupled fluid–structure interaction model of congenital bicuspid aortic valves: effect of asymmetry on hemodynamics. Med Biol Eng Comput 51, 839–848 (2013). https://doi.org/10.1007/s11517-013-1055-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11517-013-1055-4

Keywords

Navigation