Skip to main content
Log in

Experimental and model-based analysis of differences in perception of cutaneous electrical stimulation across the sole of the foot

  • Original Article
  • Published:
Medical & Biological Engineering & Computing Aims and scope Submit manuscript

Abstract

During electrocutaneous stimulations, variation in skin properties across locations can lead to differences in neural activation. However, little focus has been given to the effect of different skin thicknesses on neural activation. Electrical stimulation was applied to six sites across the sole of the foot. The intensities used were two and four times perception threshold. The subjects (n = 8) rated the perception quality and intensity using the McGill Pain Questionnaire and a visual analog scale (VAS). A finite element model was developed and combined with the activation function (AF) to estimate neural activation. Electrical stimulation was perceived as significantly less sharp at the heel compared to all other sites, except one site in the forefoot (logistic regression, p < 0.05). The VAS scores were significantly higher in the arch than at the heel (RM ANOVA, p < 0.05). The model showed that the AF was between 91 and 231 % higher at the five other sites than at the heel. The differences in perception across the sole of the foot indicated that the CNS received different inputs depending on the stimulus site. The lower AF at the heel indicated that the skin thicknesses could contribute to the perceived differences.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Andersen OK (2007) Studies of the organization of the human nociceptive withdrawal reflex. Focus on sensory convergence and stimulation site dependency. Acta Physiol (Oxf) 189:1–35

    Article  Google Scholar 

  2. Andersen OK, Sonnenborg F, Matjacic Z, Arendt-Nielsen L (2003) Foot-sole reflex receptive fields for human withdrawal reflexes in symmetrical standing position. Exp Brain Res 152:434–443

    Article  PubMed  Google Scholar 

  3. Andersen OK, Sonnenborg FA, Arendt-Nielsen L (1999) Modular organization of human leg withdrawal reflexes elicited by electrical stimulation of the foot sole. Muscle Nerve 22:1520–1530

    Article  PubMed  CAS  Google Scholar 

  4. Andersen OK, Sonnenborg FA, Arendt-Nielsen L (2001) Reflex receptive fields for human withdrawal reflexes elicited by non-painful and painful electrical stimulation of the foot sole. Clin Neurophysiol 112:641–649

    Article  PubMed  CAS  Google Scholar 

  5. Andersen OK, Spaich EG, Madeleine P, Arendt-Nielsen L (2005) Gradual enlargement of human withdrawal reflex receptive fields following repetitive painful stimulation. Brain Res 1042:194–204

    Article  PubMed  CAS  Google Scholar 

  6. Arendt-Nielsen L, Yarnitsky D (2009) Experimental and clinical applications of quantitative sensory testing applied to skin, muscles and viscera. J Pain 10:556–572

    Article  PubMed  Google Scholar 

  7. Arthur RP, Shelley WB (1959) The innervation of human epidermis. J Invest Dermatol 32:397–411

    Article  PubMed  CAS  Google Scholar 

  8. Biurrun Manresa JA, Neziri AY, Curatolo M, Arendt-Nielsen L, Andersen OK (2011) Test-retest reliability of the nociceptive withdrawal reflex and electrical pain thresholds after single and repeated stimulation in patients with chronic low back pain. Eur J Appl Physiol 111:83–92

    Article  PubMed  Google Scholar 

  9. Blechschmidt E (1934) Die Architektur des Fersenpolsters. Gegenbaurs Morphol Jahrb 73:20–68

    Google Scholar 

  10. Burke D, Mackenzie RA, Skuse NF, Lethlean AK (1975) Cutaneous afferent activity in median and radial nerve fascicles: a microelectrode study. J Neurol Neurosurg Psychiatry 38:855–864

    Article  PubMed  CAS  Google Scholar 

  11. Drewes AM, Helweg-Larsen S, Petersen P, Brennum J, Andreasen A, Poulsen LH, Jensen TS (1993) McGill Pain Questionnaire translated into Danish: experimental and clinical findings. Clin J Pain 9:80–87

    Article  PubMed  CAS  Google Scholar 

  12. Frahm KS, Andersen OK, Arendt-Nielsen L, Morch CD (2010) Spatial temperature distribution in human hairy and glabrous skin after infrared CO2 laser radiation. Biomed Eng Online 9:69

    Article  PubMed  Google Scholar 

  13. Gabriel S, Lau RW, Gabriel C (1996) The dielectric properties of biological tissues: II. Measurements in the frequency range 10 Hz to 20 GHz. Phys Med Biol 41:2251–2269

    Article  PubMed  CAS  Google Scholar 

  14. Gabriel S, Lau RW, Gabriel C (1996) The dielectric properties of biological tissues: III. Parametric models for the dielectric spectrum of tissues. Phys Med Biol 41:2271–2293

    Article  PubMed  CAS  Google Scholar 

  15. Grill WM (1999) Modeling the effects of electric fields on nerve fibers: influence of tissue electrical properties. IEEE Trans Biomed Eng 46:918–928

    Article  PubMed  Google Scholar 

  16. Hansen N, Klein T, Magerl W, Treede RD (2007) Psychophysical evidence for long-term potentiation of C-fiber and Adelta-fiber pathways in humans by analysis of pain descriptors. J Neurophysiol 97:2559–2563

    Article  PubMed  Google Scholar 

  17. Hilliges M, Wang L, Johansson O (1995) Ultrastructural evidence for nerve fibers within all vital layers of the human epidermis. J Invest Dermatol 104:134–137

    Article  PubMed  CAS  Google Scholar 

  18. Kennedy PM, Inglis JT (2002) Distribution and behaviour of glabrous cutaneous receptors in the human foot sole. J Physiol 538:995–1002

    Article  PubMed  CAS  Google Scholar 

  19. Kennedy WR, Wendelschafer-Crabb G (1993) innervation of human epidermis. The J Neurol Sci 115:184–190

    Article  CAS  Google Scholar 

  20. Klingman AM (1964) Biology of the stratum corneum. In: Montagna W, Lobitz WC (eds) The Epidermis. Academic Press, New York, pp 387–433

    Google Scholar 

  21. Kuhn A, Keller T, Lawrence M, Morari M (2009) A model for transcutaneous current stimulation: simulations and experiments. Med Biol Eng Comput 47:279–289

    Article  PubMed  Google Scholar 

  22. Lewis C, Souvlis T, Sterling M (2010) Sensory characteristics of tender points in the lower back. Man Ther 15:451–456

    Article  PubMed  Google Scholar 

  23. Mackenzie RA, Burke D, Skuse NF, Lethlean AK (1975) Fibre function and perception during cutaneous nerve block. J Neurol Neurosurg Psychiatry 38:865–873

    Article  PubMed  CAS  Google Scholar 

  24. Magerl W, Ali Z, Ellrich J, Meyer RA, Treede RD (1999) C- and A delta-fiber components of heat-evoked cerebral potentials in healthy human subjects. Pain 82:127–137

    Article  PubMed  CAS  Google Scholar 

  25. Maiani G, Sanavio E (1985) Semantics of pain in Italy: the Italian version of the McGill Pain Questionnaire. Pain 22:399–405

    Article  PubMed  CAS  Google Scholar 

  26. Morch CD, Hennings K, Andersen OK (2011) Estimating nerve excitation thresholds to cutaneous electrical stimulation by finite element modeling combined with a stochastic branching nerve fiber model. Med Biol Eng Comput 49:385–395

    Article  PubMed  Google Scholar 

  27. Neziri AY, Andersen OK, Petersen-Felix S, Radanov B, Dickenson AH, Scaramozzino P, Arendt-Nielsen L, Curatolo M (2010) The nociceptive withdrawal reflex: normative values of thresholds and reflex receptive fields. Eur J Pain 14:134–141

    Article  PubMed  Google Scholar 

  28. Nolano M, Provitera V, Crisci C, Stancanelli A, Wendelschafer-Crabb G, Kennedy WR, Santoro L (2003) Quantification of myelinated endings and mechanoreceptors in human digital skin. Ann Neurol 54:197–205

    Article  PubMed  Google Scholar 

  29. Paul-Dauphin A, Guillemin F, Virion JM, Briancon S (1999) Bias and precision in visual analogue scales: a randomized controlled trial. Am J Epidemiol 150:1117–1127

    Article  PubMed  CAS  Google Scholar 

  30. Rattay F (1986) Analysis of models for external stimulation of axons. IEEE Trans Biomed Eng 33:974–977

    Article  PubMed  CAS  Google Scholar 

  31. Reilly DM, Ferdinando D, Johnston C, Shaw C, Buchanan KD, Green MR (1997) The epidermal nerve fibre network: characterization of nerve fibres in human skin by confocal microscopy and assessment of racial variations. Br J Dermatol 137:163–170

    Article  PubMed  CAS  Google Scholar 

  32. Schouenborg J, Weng HR, Kalliomaki J, Holmberg H (1995) A survey of spinal dorsal horn neurones encoding the spatial organization of withdrawal reflexes in the rat. Exp Brain Res 106:19–27

    Article  PubMed  CAS  Google Scholar 

  33. Sherrington CS (1910) Flexion-reflex of the limb, crossed extension-reflex, and reflex stepping and standing. J Physiol 40:28–121

    PubMed  CAS  Google Scholar 

  34. Standring S (2008) Gray’s anatomy: the anatomical basis of clinical practice. Churchill Livinstone, London

    Google Scholar 

  35. Tavernier A, Dierickx M, Hinsenkamp M (1993) Tensors of dielectric permittivity and conductivity of in vitro human derms and epiderms. Bioelectroch Bioener 30:65–72

    Article  Google Scholar 

  36. Warman EN, Grill WM, Durand D (1992) Modeling the effects of electric fields on nerve fibers: determination of excitation thresholds. IEEE Trans Biomed Eng 39:1244–1254

    Article  PubMed  CAS  Google Scholar 

  37. Yamamoto T, Yamamoto Y (1976) Electrical properties of the epidermal stratum corneum. Med Biol Eng 14:151–158

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

René Lindstrøm D. C. is acknowledged for his help during the ultrasound measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ken Steffen Frahm.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Frahm, K.S., Mørch, C.D., Grill, W.M. et al. Experimental and model-based analysis of differences in perception of cutaneous electrical stimulation across the sole of the foot. Med Biol Eng Comput 51, 999–1009 (2013). https://doi.org/10.1007/s11517-013-1079-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11517-013-1079-9

Keywords

Navigation