Skip to main content
Log in

Biomechanics of thoracolumbar junction vertebral fractures from various kinematic conditions

  • Original Article
  • Published:
Medical & Biological Engineering & Computing Aims and scope Submit manuscript

Abstract

Thoracolumbar spine fracture classifications are mainly based on a post-traumatic observation of fracture patterns, which is not sufficient to provide a full understanding of spinal fracture mechanisms. This study aimed to biomechanically analyze known fracture patterns and to study how they relate to fracture mechanisms. The instigation of each fracture type was computationally simulated to assess the fracture process. A refined finite element model of three vertebrae and intervertebral connective tissues was subjected to 51 different dynamic loading conditions divided into four categories: compression, shear, distraction and torsion. Fracture initiation and propagation were analyzed, and time and energy at fracture initiation were computed. To each fracture pattern described in the clinical literature were associated one or several of the simulated fracture patterns and corresponding loading conditions. When compared to each other, torsion resulted in low-energy fractures, compression and shear resulted in medium energy fractures, and distraction resulted in high-energy fractures. Increased velocity resulted in higher-energy fracture for similar loadings. The use of a finite element model provided quantitative characterization of fracture patterns occurrence complementary to clinical and experimental studies, allowing to fully understand spinal fracture biomechanics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Buckley JM, Leang DC, Keaveny TM (2006) Sensitivity of vertebral compressive strength to endplate loading distribution. J Biomech Eng 128(5):641–646

    Article  PubMed  Google Scholar 

  2. Denis F (1983) The three column spine and its significance in the classification of acute thoracolumbar spinal injuries. Spine (Phila Pa 1976) 8(8):817–831

    Article  CAS  Google Scholar 

  3. Duma SM et al (2006) Biomechanical response of the lumbar spine in dynamic compression. Biomed Sci Instrum 42:476–481

    PubMed  Google Scholar 

  4. Eguizabal J et al (2010) Pure moment testing for spinal biomechanics applications: fixed versus sliding ring cable-driven test designs. J Biomech 43(7):1422–1425

    Article  PubMed  Google Scholar 

  5. El-Rich M et al (2009) Finite element investigation of the loading rate effect on the spinal load-sharing changes under impact conditions. J Biomech 42(9):1252–1262

    Article  PubMed  Google Scholar 

  6. Garges KJ et al (2008) A comparison of the torsional stiffness of the lumbar spine in flexion and extension. J Manip Physiol Ther 31(8):563–569

    Article  Google Scholar 

  7. Garo A et al (2011) Calibration of the mechanical properties in a finite element model of a lumbar vertebra under dynamic compression up to failure. Med Biol Eng Comput 49(12):1371–1379

    Article  PubMed  Google Scholar 

  8. Holdsworth F (1970) Fractures, dislocations, and fracture-dislocations of the spine. J Bone Joint Surg Am 52(8):1534–1551

    CAS  PubMed  Google Scholar 

  9. Kemper AR, McNally C, Duma SM (2007) The influence of strain rate on the compressive stiffness properties of human lumbar intervertebral discs. Biomed Sci Instrum 43:176–181

    PubMed  Google Scholar 

  10. Kifune M et al (1997) Functional morphology of the spinal canal after endplate, wedge, and burst fractures. J Spinal Disord 10(6):457–466

    Article  CAS  PubMed  Google Scholar 

  11. Lalonde NM et al (2010) Biomechanical modeling of the lateral decubitus posture during corrective scoliosis surgery. Clin Biomech (Bristol, Avon) 25(6):510–516

    Article  CAS  Google Scholar 

  12. Leucht P et al (2009) Epidemiology of traumatic spine fractures. Injury 40(2):166–172

    Article  PubMed  Google Scholar 

  13. Little JP, Adam CJ (2009) The effect of soft tissue properties on spinal flexibility in scoliosis: biomechanical simulation of fulcrum bending. Spine (Phila Pa 1976) 34(2):E76–E82

    Article  Google Scholar 

  14. Magerl F et al (1994) A comprehensive classification of thoracic and lumbar injuries. Eur Spine J 3(4):184–201

    Article  CAS  PubMed  Google Scholar 

  15. Neumann P, Nordwall A, Osvalder AL (1995) Traumatic instability of the lumbar spine. A dynamic in vitro study of flexion-distraction injury. Spine (Phila Pa 1976) 20(10):1111–1121

    Article  CAS  Google Scholar 

  16. Osvalder AL et al (1993) A method for studying the biomechanical load response of the (in vitro) lumbar spine under dynamic flexion-shear loads. J Biomech 26(10):1227–1236

    Article  CAS  PubMed  Google Scholar 

  17. Oxland T et al (2011) Biomechanical aspects of spinal cord injury. In: Bilston LE (ed) Neural tissue biomechanics. Springer, Berlin, pp 159–180

    Google Scholar 

  18. Panjabi MM (2007) Hybrid multidirectional test method to evaluate spinal adjacent-level effects. Clin Biomech (Bristol, Avon) 22(3):257–265

    Article  Google Scholar 

  19. Panjabi MM et al (1998) Graded thoracolumbar spinal injuries: development of multidirectional instability. Eur Spine J 7(4):332–339

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Qiu TX et al (2006) Investigation of thoracolumbar T12-L1 burst fracture mechanism using finite element method. Med Eng Phys 28(7):656–664

    Article  PubMed  Google Scholar 

  21. Vaccaro AR et al (2005) A new classification of thoracolumbar injuries: the importance of injury morphology, the integrity of the posterior ligamentous complex, and neurologic status. Spine (Phila Pa 1976) 30(20):2325–2333

    Article  Google Scholar 

  22. Wagnac E et al (2012) Finite element analysis of the influence of loading rate on a model of the full lumbar spine under dynamic loading conditions. Med Biol Eng Comput 50(9):903–915

    Google Scholar 

  23. Wagnac E et al (2011) Calibration of hyperelastic material properties of the human lumbar intervertebral disc under fast dynamic compressive loads. J Biomech Eng 133(10):101007

    Article  PubMed  Google Scholar 

  24. Whyne CM, Hu SS, Lotz JC (2003) Burst fracture in the metastatically involved spine: development, validation, and parametric analysis of a three-dimensional poroelastic finite-element model. Spine (Phila Pa 1976) 28(7):652–660

    Google Scholar 

  25. Wilcox RK et al (2004) A dynamic investigation of the burst fracture process using a combined experimental and finite element approach. Eur Spine J 13(6):481–488

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. Yogonandan N et al (1989) Stiffness and strain energy criteria to evaluate the threshold of injury to an intervertebral joint. J Biomech 22(2):135–142

    Article  Google Scholar 

Download references

Acknowledgments

This work was funded by the “Fondation Canadienne pour l’innovation” (FCI), the “Conseil de Recherche en Sciences Naturelles en Génie” (CRSNG) and the “Institut français des sciences et technologies des transports, de l’aménagement et des réseaux” (IFSTTAR).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yvan Petit.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fradet, L., Petit, Y., Wagnac, E. et al. Biomechanics of thoracolumbar junction vertebral fractures from various kinematic conditions. Med Biol Eng Comput 52, 87–94 (2014). https://doi.org/10.1007/s11517-013-1124-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11517-013-1124-8

Keywords

Navigation