Skip to main content
Log in

Computer methods for follow-up study of hemodynamic and disease progression in the stented coronary artery by fusing IVUS and X-ray angiography

  • Original Article
  • Published:
Medical & Biological Engineering & Computing Aims and scope Submit manuscript

Abstract

Despite a lot of progress in the fields of medical imaging and modeling, problem of estimating the risk of in-stent restenosis and monitoring the progress of the therapy following stenting still remains. The principal aim of this paper was to propose architecture and implementation details of state of the art of computer methods for a follow-up study of disease progression in coronary arteries stented with bare-metal stents. The 3D reconstruction of coronary arteries was performed by fusing X-ray angiography and intravascular ultrasound (IVUS) as the most dominant modalities in interventional cardiology. The finite element simulation of plaque progression was performed by coupling the flow equations with the reaction–diffusion equation applying realistic boundary conditions at the wall. The alignment of baseline and follow-up data was performed automatically by temporal alignment of IVUS electrocardiogram-gated frames. The assessment was performed using three six-month follow-ups of right coronary artery. Simulation results were compared with the ground truth data measured by clinicians. In all three data sets, simulation results indicated the right places as critical. With the obtained difference of 5.89 ± ~4.5 % between the clinical measurements and the results of computer simulations, we showed that presented framework is suitable for tracking the progress of coronary disease, especially for comparing face-to-face results and data of the same artery from distinct time periods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Alberti M, Balocco S, Carrillo X, Mauri J, Radeva P (2013) Automatic non-rigid temporal alignment of intravascular ultrasound sequences: method and quantitative validation. Ultrasound Med Biol 39(9):1698–1712

    Article  PubMed  Google Scholar 

  2. Antiga L, Piccinelli M, Botti L, Ene-Iordache B, Remuzzi A, Steinman DA (2008) An image-based modeling framework for patient-specific computational hemodynamics. Med Biol Eng Compu 46(11):1097–1112

    Article  Google Scholar 

  3. Balasubramanian D, Srinivasan P, Gurupatham R (2007) Automatic classification of focal lesions in ultrasound liver images using principal component analysis and neural networks. In: Proceedings of IEEE engineering medicinal biological society on conference, Lyon, pp 2134–2137

  4. Balocco S, Gatta C, Alberti M, Carrillo X, Rigla J, Radeva P (2012) Relation between plaque type, plaque thickness, blood shear stress and plaque stress in coronary arteries assessed by X-ray angiography and intravascular ultrasound. Med Phys 39(12):7430–7445

    Article  PubMed  Google Scholar 

  5. Bathe KJ (1996) Finite element procedures. Prentice-Hall, Englewood Cliffs

    Google Scholar 

  6. Belongie S, Malik J, Puzicha J (2002) Shape matching and object recognition using shape contexts. IEEE Trans Pattern Anal Mach Intell 24(4):509–522

    Article  Google Scholar 

  7. Bourantas C, Kalatzis F, Papafaklis M, Fotiadis D, Tweddel A, Kourtis I, Katsouras C, Michalis L (2008) ANGIOCARE: an automated system for fast three-dimensional coronary reconstruction by integrating angiographic and intracoronary ultrasound data. Catheter Cardiovasc Interv 72:166–175

    Article  PubMed  Google Scholar 

  8. Butterworth S (1930) On the theory of filter amplifiers. Wirel Eng 7:536–541

    Google Scholar 

  9. Caiazzo A, Evans D, Falcone JL, Hegewald J, Lorenz E, Stahl B, Wang D, Bernsdorf J, Chopard B, Gunn J, Hose R, Krafczyk M, Lawford P, Smallwood R, Hoekstra A, Walker D (2011) A complex automata approach for in-stent restenosis: two-dimensional multiscale modelling and simulations. J Comput Sci 2(1):9–17

    Article  Google Scholar 

  10. Cárdenes R, Díez JL, Larrabide I, Bogunovic H, Frangi AF (2011) 3D Modeling of coronary artery bifurcations from CTA and conventional coronary angiography. MICCAI; Toronto pp 395–402

  11. Cárdenes R, Novikov A, Gunn J, Hose RD, Frangi AF (2012) 3D reconstruction of coronary arteries from rotational X-ray angiography. In Proceedings on international symposium on biomedical imaging, Barcelona, pp 618–621

  12. Chen SJ, Carroll JD (2000) 3-D reconstruction of coronary arterial tree to optimize angiographic visualization. IEEE Trans Med Imaging 19(4):318–336

    Article  CAS  PubMed  Google Scholar 

  13. Chen SY, Carroll JD, Messenger JC (2002) Quantitative analysis of reconstructed 3-D coronary arterial tree and intracoronary devices. IEEE Trans Med Imaging 21(7):724–740

    Article  PubMed  Google Scholar 

  14. Chiastra C, Morlacchi S, Pereira S, Dubini G, Migliavacca F (2012) Computational fluid dynamics of stented coronary bifurcations studied with a hybrid discretization method. Eur J Mech B Fluids 35:76–84

    Article  Google Scholar 

  15. Chrzanowski L, Drozdz J, Strzelecki M, Krzeminska-Pakula M, Jedrzejewski K, Kasprzak J (2008) Application of neural networks for the analysis of intravascular ultrasound and histological aortic wall appearance-an in vitro tissue characterization study. Ultrasound Med Biol 34(1):103–113

    Article  PubMed  Google Scholar 

  16. Ciompi F, Pujol O, Gatta C, Alberti M, Balocco S, Carrillo X, Mauri-Ferre J, Radeva P (2012) HoliMAb: a holistic approach for media-adventitia border detection in intravascular ultrasound. Med Image Anal 16(6):1085–1100

    Article  PubMed  Google Scholar 

  17. Cosottini M, Michelassi MC,Bencivelli W, Lazzarotti G, Picchietti S, Orlandi G, Parenti G, Puglioli M (2010) In stent restenosis predictors after carotid artery stenting. Stroke Res Treat Article ID 864724:6. doi:10.4061/2010/864724

  18. de Boor C (1972) On calculating with B-splines. J Approx Theory 6(1):50–62

    Article  Google Scholar 

  19. Dehlaghi V, Shadpoor MT, Najarian S (2008) Analysis of wall shear stress in stented coronary artery using 3D computational fluid dynamics modeling. J Mater Process Technol 197(1–3):174–181

    Article  CAS  Google Scholar 

  20. Donea J (1983) Arbitrary Lagrangian-Eulerian finite elements methods. In: Belytschko T, Hughes TJR (eds) Computational methods for transient analysis. Elsevier, Amsterdam, pp 473–516

    Google Scholar 

  21. Elizabeth G, Nabel MD, Braunwald E, Silverman MD (2012) Tale of coronary artery disease and myocardial infarction. N Engl J Med 366:54–63

    Article  Google Scholar 

  22. Feldman C, Ilegbusi O, Hu Z, Nesto R, Waxman S, Stone P (2002) Determination of in vivo velocity and endothelial shear stress patterns with phasic flow in human coronary arteries: a methodology to predict progression of coronary atherosclerosis. Am Heart J 143:931–939

    Article  PubMed  Google Scholar 

  23. Filipovic N (2013) PAK-Athero, finite element program for plaque formation and development. University of Kragujevac, Serbia

    Google Scholar 

  24. Filipovic N, Rosic M, Tanaskovic I, Milosevic Z, Nikolic D, Zdravkovic N, Peulic A, Fotiadis D, Parodi O (2011) ARTreat project: three-dimensional numerical simulation of plaque formation and development in the arteries. IEEE Trans Inf Technol Biomed 16(2):272–278

    Article  PubMed  Google Scholar 

  25. Filipovic N, Teng Z, Radovic M, Saveljic I, Fotiadis D, Parodi O (2013) Computer simulation of three dimensional plaque formation and progression in the carotid artery. Med Biol Eng Compu 51(6):607–616

    Article  Google Scholar 

  26. Frenet F (1852) Sur les courbes à double courbure. Thèse, Toulouse [in French]

  27. Go AS, Mozaffarian D, Roger VL, Benjamin EJ, Berry JD, Borden WB, Bravata DM, Dai S, Ford ES, Fox CS, Franco S, Fullerton HJ, Gillespie C, Hailpern SM, Heit JA, Howard VJ, Huffman MD, Kissela BM, Kittner SJ, Lackland DT, Lichtman JH, Lisabeth LD, Magid D, Marcus GM, Marelli A, Matchar DB, McGuire DK, Mohler ER, Moy CS, Mussolino ME, Nichol G, Paynter NP, Schreiner PJ, Sorlie PD, Stein J, Turan TN, Virani SS, Wong ND, Woo D, Turner MB; American Heart Association Statistics Committee and Stroke Statistics Subcommittee (2013) Heart disease and stroke statistics-2013 update: a report from the American Heart Association. Circulation 27(1):e6–e245

  28. Groher M, Hoffmann RT, Zech CJ, Reiser M, Navab N (2007) An efficient registration algorithm for advanced fusion of 2D/3D angiographic data. Bildverarbeitungfür die Medizin, Springer, Berlin, pp 156–160

    Google Scholar 

  29. Hartley R, Zisserman A (2004) Multiple view geometry in computer vision. Cambridge University Press, Cambridge, pp 239–261

  30. Hernàndez-Sabaté A, Gil D, Fernandez-Nofrerias E, Radeva P, Martí E (2009) Approaching rigid artery dynamics in IVUS. IEEE Trans Med Imaging 28(11):1670–1680

    Article  PubMed  Google Scholar 

  31. Hoffmann KR, Wahle A, Pellot-Barakat C, Sklansky J, Sonka M (1999) Biplane X-ray angiograms, intravascular ultrasound, and 3D visualization of coronary vessels. Int J Card Imaging 15(6):495–512

    Article  CAS  PubMed  Google Scholar 

  32. Iliopoulos CS, Rahman MS (2008) Algorithms for computing variants of the longest common subsequence problem. Theoret Comput Sci 395(2–3):255–267

    Article  Google Scholar 

  33. Kass M, Witkin A, Terzopoulos D (1988) Snakes: active contour models. Int J Comput Vision 1(4):321–331

    Article  Google Scholar 

  34. Kedem O, Katchalsky A (1961) A physical interpretation of the phenomenological coefficients of membrane permeability. J Gen Physiol 45(1):143–179

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  35. Kojić M, Filipović N, Slavković R, Živković M, Grujović N (1998) PAKF: Program for FE analysis of fluid flow with heat transfer. Faculty of Mechanical Engineering Kragujevac, University of Kragujevac

  36. Koskinas K, Chatzizisis Y, Antoniadis A, Giannoglou G (2012) Role of endothelial shear stress in stent restenosis and thrombosis: pathophysiologic mechanisms and implications for clinical translation. J Am Coll Cardiol 59(15):1337–1349

    Article  PubMed  Google Scholar 

  37. Kottke TE, Faith DA, Jordan CO, Pronk NP, Thomas RJ, Capewell S (2009) The comparative effectiveness of heart disease prevention and treatment strategies. Am J Prev Med 36(1):82–88

    Article  PubMed  Google Scholar 

  38. Kumar M (2010) A review of coronary stents and study of its interaction with artery using finite element analysis. J Innov Res Eng Sci 1(1):134–138

    Google Scholar 

  39. Laban M, Oomen JA, Slager CJ, Wentzel JJ, Krams R, Schuurbiers JCH, den Beer A, von Birgelen C, Serruys PW, de Feijter PJ (1995) ANGUS: a new approach to three-dimensional reconstruction of coronary vessels by combined use of angiography and intravascular ultrasound. Computers in Cardiology, Vienna, pp 325–328

  40. Laine AF (2012) A state-of-the-art review on segmentation algorithms in intravascular ultrasound (IVUS) images. IEEE Trans Inf Technol Biomed 16(5):823–834

    Article  PubMed  Google Scholar 

  41. Lally C, Dolan F, Prendergast PJ (2005) Cardiovascular stent design and vessel stresses: a finite element analysis. J Biomech 38(8):1574–1581

    Article  CAS  PubMed  Google Scholar 

  42. Laslett LJ, Alagona P, Clark BA, Drozda JP, Saldivar F, Wilson SR, Poe C, Hart M (2012) The worldwide environment of cardiovascular disease: prevalence, diagnosis, therapy, and policy issues: a report from the american college of cardiology. J Am Coll Cardiol 60(25_S):S1–S49

  43. Latecki LJ, Megalooikonomou V, Wang Q, Lakämper R, Ratanamahatana C, Keogh EJ (2005) Partial elastic matching of time series. In: Fifth IEEE international conference on data mining ICDM, Houston TX, pp 701–704

  44. Latecki LJ, Megalooikonomou V, Wang Q, Yu D (2007) An elastic partial shape matching technique. Pattern Recogn 40(11):3069–3080

    Article  Google Scholar 

  45. Latecki LJ, Wang Q, Koknar-Tezel S, Megalooikonomou V (2007) Optimal subsequence bijection. In: Seventh IEEE international conference on data mining, Omaha, pp 565–570

  46. Lowe HC, Oesterle SN, Khachigian LM (2002) Coronary in-stent restenosis: current status and future strategies. J Am Coll Cardiol 39(2):183–193

    Article  PubMed  Google Scholar 

  47. Markelj P, Tomaževič D, Likar B, Pernuš F (2012) A review of 3D/2D registration methods for image-guided interventions. Med Image Anal 16(3):642–661

    Article  CAS  PubMed  Google Scholar 

  48. Mittal D, Kumar V, Saxena SC, Khandelwal N, Kalra N (2011) Neural network based focal liver lesion diagnosis using ultrasound images. Comput Med Imaging Graph 35(4):315–323

    Article  PubMed  Google Scholar 

  49. Morales C, Radeva PC (2003) Vesselness enhancement diffusion. Pattern Recogn Lett 24(16):3141–3151

    Article  Google Scholar 

  50. Morlacchi S, Migliavacca F (2013) Modeling stented coronary arteries: where we are, where to go. Ann Biomed Eng 41(7):1428–1444

    Article  PubMed  Google Scholar 

  51. Nanfeng S, Nigel W, Alun H, Simon TX, Yun X (2006) Fluid-wall modelling of mass transfer in an axisymmetric stenosis: effects of shear-dependent transport properties. Ann Biomed Eng 34(7):1119–1128

    Article  Google Scholar 

  52. Parodi O, Exarchos TP, Marraccini P, Vozzi F, Milosevic Z, Nikolic D, Sakellarios A, Siogkas PK, Fotiadis DI, Filipovic N (2012) Patient-specific prediction of coronary plaque growth from CTA angiography: a multiscale model for plaque formation and progression. IEEE Trans Inf Technol Biomed 16(5):952–965

    Article  PubMed  Google Scholar 

  53. Piegl L, Tiller W (1995) The Nurbs book, 2nd edn. Springer, Berlin

    Book  Google Scholar 

  54. Robert M, Cothren S, Shekhar R, Murat TE, Steven E, Nissen J, Fredrick DC, Vince G (2000) Three-dimensional reconstruction of the coronary artery wall by image fusion of intravascular ultrasound and bi-plane angiography. Int J Cardiac Imaging 16(2):69–85

    Article  Google Scholar 

  55. Sakellarios A, Fotiadis D, Michalis L (2008) Finite element modeling of LDL transport in carotid artery bifurcations. EMBEC Conference; Antwerp, pp 1967–1971

  56. Sakoe H, Chiba S (1978) Dynamic programming algorithm optimization for spoken word recognition. IEEE Trans Acoust Speech Signal Process 26(1):43–49

    Article  Google Scholar 

  57. Scott NA (2006) Restenosis following implantation of bare metal coronary stents: pathophysiology and pathways involved in the vascular response to injury. Adv Drug Deliv Rev 58(3):358–376

    Article  CAS  PubMed  Google Scholar 

  58. Shechter G, Devernay F, Coste-Maniere E, Quyyumi A, McVeigh ER (2003) Three-dimensional motion tracking of coro-nary arteries in biplane cineangiograms. IEEE Trans Med Imag 22(4):493–503

    Article  Google Scholar 

  59. Silverman ME (2006) Coronary-artery stents. N Engl J Med 354(6):483–495

    Google Scholar 

  60. Siogkas P, Sakellarios A, Exarchos TP, Athanasiou L, Karvounis E, Stefanou K, Fotiou E, Fotiadis DI, Naka KK, Michalis LK, Filipovic N, Parodi O (2011) Multiscale-patient-specic artery and atherogenesismodels. IEEE Trans Biomed Eng 58(12):3464–3468

    Article  CAS  PubMed  Google Scholar 

  61. Stone PH, Coskun AU, Kinlay S, Clark PH, Sonka M, Wahle A, Ilegbusi OJ, Yeghiazarians Y, Popma JJ, Orav J, Kuntz RE, Feldman CL (2003) Effect of endothelial shear stress on the progression of coronary artery disease, vascular remodeling, and in-stent restenosis in humans: in vivo 6-month follow-up study. Circulation 108(4):438–444

    Article  PubMed  Google Scholar 

  62. Takahashi T, Honda Y, Russo RJ, Fitzgerald PJ (2002) Intravascular ultrasound and quantitative coronary angiography 55(1):118–128

  63. Taki A, Najafi Z, Roodaki A, Setarehdan SK, Zoroofi AR, König A, Navab N (2008) Automatic segmentation of calcified plaques and vessel borders in IVUS images. Int J Comput Assist Radiol Surg 3(3–4):347–354

    Article  Google Scholar 

  64. Toner D, Basir F, Lally C (2006) An investigation into the effect of stent strut thickness on restenosis using the finite element method and validation using an in vitro compliant artery model. J Biomech 39(1):S403

    Article  Google Scholar 

  65. Wahle A (2003) Coronary angiography and intravascular ultrasound—spatio-temporal modeling and quantification by data fusion. EFOMP 1:29–31

    Google Scholar 

  66. Wahle A, Oswald H, Fleck H (1996) 3D heart-vessel reconstruction from biplane angiograms. IEEE Comput Graph Appl 16(1):65–73

    Article  Google Scholar 

  67. Wahle A, Prause G, DeJong S, Sonka M (1999) Geometrically correct 3-D reconstruction of intravascular ultrasound images by fusion with biplane angiography—methods and validation. IEEE Trans Med Imaging 30(1):187–198

    Google Scholar 

  68. Weickert J (1998) Anisotropic diffusion in image processing. ECMI Series. Teubner-Verlag, Stuttgart

    Google Scholar 

  69. Wijeysundera HC, Machado M, Farahati F, Wang X, Witteman W, van der Velde G, Tu JV, Lee DS, Goodman SG, Petrella R, O’Flaherty M, Krahn M, Capewell S (2010) Association of temporal trends in risk factors and treatment uptake with coronary heart disease mortality, 1994–2005. JAMA 303:1841–1847

    Article  CAS  PubMed  Google Scholar 

  70. Xu C, Prince L (1998) Snakes, shapes, and gradient vector flow. IEEE Trans Image Process 7(3):359–369

    Article  CAS  PubMed  Google Scholar 

  71. Yang J, Wang Y, Liu Y, Tang S, Chen W (2009) Novel approach for 3-D reconstruction of coronary arteries from two unca-librated angiographic images. IEEE Trans Image Process 18(7):1563–1572

    Article  PubMed  Google Scholar 

  72. Zhang D, Lu G (2004) Review of shape representation and description techniques. Pattern Recogn 37(1):1–19

    Article  Google Scholar 

  73. Zhu H, Oakeson KD, Morton H (2003) Retrieval of cardiac phase from IVUS sequences. Med Imaging Ultrasonic Imaging Signal Process 5035:135–146

    Google Scholar 

Download references

Acknowledgments

This study was funded by a grant from FP7-ICT-2007 project (grant agreement 224297, ARTreat) and grants from Serbian Ministry of Education and Science III41007 and ON174028. Also, we would like to thank three anonymous reviewers for very constructive suggestions which improved the present paper.

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nenad D. Filipovic.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vukicevic, A.M., Stepanovic, N.M., Jovicic, G.R. et al. Computer methods for follow-up study of hemodynamic and disease progression in the stented coronary artery by fusing IVUS and X-ray angiography. Med Biol Eng Comput 52, 539–556 (2014). https://doi.org/10.1007/s11517-014-1155-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11517-014-1155-9

Keywords

Navigation