Skip to main content
Log in

Quantitative topographic anatomy of the femoral ACL footprint: a micro-CT analysis

  • Original Article
  • Published:
Medical & Biological Engineering & Computing Aims and scope Submit manuscript

A Correction to this article was published on 13 November 2017

This article has been updated

Abstract

The femoral footprint of the anterior cruciate ligament (ACL) is a much-studied anatomic structure, predominantly due to its importance during ACL reconstruction surgery. A new technique utilising high-resolution micro-computed tomography (micro-CT) is described, allowing detailed three-dimensional (3D) quantitative analysis of this structure. Seven cadaveric knees were scanned using micro-CT, yielding 3D data with a reconstructed voxel size of 60 μm. A novel method of 3D surface extraction was developed and validated, facilitating both qualitative observation of surface details and quantitative topographic assessment using colour-coded relief maps. Images were displayed on an immersive 3D visualisation wall, and ten experienced ACL clinicians were surveyed as to the presence and morphology of osseous landmarks, providing qualitative assessment of whether such features can be reliably identified for navigation during surgery. Both quantitative analysis and qualitative assessment of the footprints in this study showed significant variability in the presence and morphology of osseous landmarks, with the lateral intercondylar ridge being objectively present in four out of seven relief maps, although reportedly seen in six out of seven cases in the qualitative study, suggesting an element of subjectivity and interpretation. This is the first study to utilise micro-CT in the study of ACL anatomy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Change history

  • 13 November 2017

    An author has corrected their first name and updated their email address - see the affiliation section below. Daniel G. Norman should now be Danielle G. Norman as shown in the authorgroup section above.

Abbreviations

ACL:

Anterior cruciate ligament

CT:

Computed tomography

ROI:

Region of interest

CAD:

Computer aided design

STL:

Stereolithography file

References

  1. Abulrub AG, Attridge A, Williams MA (2011) Virtual reality in engineering education: the future of creative learning. iJET 60(4):4–11

    Google Scholar 

  2. Baudoin A, Skalli W, de Guise JA, Mitton D (2008) Parametric subject-specific model for in vivo 3D reconstruction using bi-planar X-rays: application to the upper femoral extremity. Med Biol Eng Comput 46(8):799–805

    Article  CAS  PubMed  Google Scholar 

  3. Bernard M, Hertel P, Hornung H, Cier-pinski T (1997) Femoral insertion of the ACL. Radiographic quadrant method. Am J Knee Surg 10(1):14–21

    CAS  PubMed  Google Scholar 

  4. Besl PJ, McKay ND (1992) A method for registration of 3-D shapes. IEEE Trans Pattern Anal Mach Intell 14(2):239–256

    Article  Google Scholar 

  5. Bird JH, Carmont MR, Dhillon M, Smith N, Brown C, Thompson P, Spalding T (2011) Validation of a new technique to determine midbundle femoral tunnel position in anterior cruciate ligament reconstruction using 3-dimensional computed tomography analysis. Arthroscopy 27(9):1259–1267

    Article  PubMed  Google Scholar 

  6. Bottino A, Nuij W, van Overveld K (1996) How to shrinkwrap through a critical point: an algorithm for the adaptive triangulation of iso-surfaces with arbitrary topology. Proc Implic Surf 96:53–72

    Google Scholar 

  7. Brown LG (1992) A survey of image registration techniques. ACM Comput Surv (CSUR) 24(4):325–376

    Article  Google Scholar 

  8. Campbell RJ, Flynn PJ (2001) A survey of free-form object representation and recognition techniques. Comput Vis Image Underst 81(2):166–210

    Article  Google Scholar 

  9. Cohen JD (1998) Appearance-preserving simplification of polygonal models. Ph.D. Dissertation. University of North Carolina at Chapel Hill

  10. Colombet P, Robinson J, Christel P (2006) Morphology of anterior cruciate ligament attachments for anatomic reconstruction: a cadaveric dissection and radiographic study. Arthroscopy 22:984–992

    Article  PubMed  Google Scholar 

  11. Duthon VB, Barea C, Abrassart S, Fasel JH, Fritschy D, Menetrey J (2006) Anatomy of the anterior cruciate ligament. Knee Surg Sports Traumatol Arthrosc 14:204–213

    Article  CAS  PubMed  Google Scholar 

  12. Edwards A, Bull AM, Amis AA (2008) The attachments of the anteromedial and posterolateral fibre bundles of the anterior cruciate ligament. Part 2: femoral attachment. Knee Surg Sports Traumatol Arthrosc 16:29–36

    Article  PubMed  Google Scholar 

  13. Farrow LD, Chen MR, Cooperman DR, Victoroff BN, Goodfellow DB (2007) Morphology of the femoral intercondylar notch. J Bone Joint Surg 89(10):2150–2155

    PubMed  Google Scholar 

  14. Feldkamp LA, Davis LC, Kress JW (1984) Practical cone-beam algorithm. JOSA A 1(6):612–619

    Article  Google Scholar 

  15. Ferretti M, Ekdahl M, Shen W, Fu FH (2007) Osseous landmarks of the femoral attachment of the anterior cruciate ligament: an anatomic study. Arthroscopy 23(11):1218–1225

    Article  PubMed  Google Scholar 

  16. Fleiss JL (1981) Statistical methods for raters and proportions, 2nd edn. Wiley, New York

    Google Scholar 

  17. Fleiss JL (1997) Measuring nominal scale agreement among many raters. Psychol Bull 76(5):378–382

    Article  Google Scholar 

  18. Frey WH, Field DA (1991) Mesh relaxation: a new technique for improving triangulations. Int J Numer Meth Eng 31(6):1121–1133

    Article  Google Scholar 

  19. Fu FH, Karlsson J (2010) A long journey to be anatomic. Knee Surg Sports Traumatol Arthrosc 18(9):1151–1153

    Article  PubMed  Google Scholar 

  20. Girgis FG, Marshall JL, JEM AAM (1975) The cruciate ligaments of the knee joint: anatomical, functional and experimental analysis. Clin Orthop Relat Res 106:216–231

    Article  Google Scholar 

  21. Giron F, Cuomo P, Aglietti P, Bull AM, Amis AA (2006) Femoral attachment of the anterior cruciate ligament. Knee Surg Sports Traumatol Arthrosc 14:250–256

    Article  PubMed  Google Scholar 

  22. Hayes AF, Krippendorff K (2007) Answering the call for a standard reliability measure for coding data. Commun Methods Measures 1:77–89

    Article  Google Scholar 

  23. Huchinson MR, Ash SA (2003) Resident’s ridge: assessing the cortical thickness of the lateral wall and roof of the intercondylar notch. Arthroscopy 19(9):931–935

    Article  Google Scholar 

  24. Illingworth KD, Hensler D, Working ZM, Macalena AJ, Tashman S, Fu FH (2011) A simple evaluation of anterior cruciate ligament femoral tunnel position: the inclination angle and femoral tunnel angle. Am J Sports Med 39(12):2611–2618

    Article  PubMed  Google Scholar 

  25. Jabara MR, Clancy WG Jr (2005) Anatomic arthroscopic anterior cruciate ligament reconstruction using bone-patellar tendon–bone autograft. Tech Orthop 20(4):405–413

    Article  Google Scholar 

  26. Klein R, Liebich G, Straßer W (1996). Mesh reduction with error control. In: Visualization ‘96. Proceedings: 311–318. IEEE

  27. Kopf S, Musahl V, Tashman S, Szczodry M, Shen W, Fu F (2009) A systematic review of the femoral origin and tibial insertion morphology of the ACL. Knee Surg Sports Traumatol Arthrosc 17:213–219

    Article  PubMed  Google Scholar 

  28. Krippendorff K (1980) Content analysis: an introduction to its methodology. Sage, Beverly Hills, CA

    Google Scholar 

  29. Kruth JP, Bartscher M, Carmignato S, Schmitt R, De Chiffre L, Weckenmann A (2011) Computed tomography for dimensional metrology. CIRP Ann Manufac Technol 60(2):821–842

    Article  Google Scholar 

  30. Landis JR, Koch GG (1977) The measurement of observer agreement for categorical data. Biometrics 33:159–174

    Article  CAS  PubMed  Google Scholar 

  31. Likert R (1932) A technique for the measurement of attitudes. Archives of Psychology 140:1–55

    Google Scholar 

  32. Loh JC, Fukuda Y, Tsuda E, Steadman RJ, Fu FH, Woo SL (2002) Knee stability and graft function following anterior cruciate ligament reconstruction: comparison between 11 o’clock and 10 o’clock femoral tunnel placement. 2002 Richard O’Connor Award paper. Arthroscopy 19:297–304

    Article  Google Scholar 

  33. Maire E, Withers PJ (2014) Quantitative X-ray tomography. Int Mater Rev 59(1):1–43

    Article  CAS  Google Scholar 

  34. Odensten M, Gillquist J (1985) Functional anatomy of the anterior cruciate ligament and a rationale for reconstruction. J Bone Joint Surg 67(2):257–262

    Article  CAS  PubMed  Google Scholar 

  35. Pietrini SD, Ziegler CG, Anderson CJ et al (2011) Radiographic landmarks for tunnel positioning in double-bundle ACL reconstructions. Knee Surg Sports Traumatol Arthrosc 19:792–800

    Article  PubMed  Google Scholar 

  36. Purnell ML, Larson AI, Clancy W (2008) Anterior cruciate ligament insertions on the tibia and femur and their relationships to critical bony landmarks using high-resolution volume-rendering computed tomography. Am J Sports Med 36(11):2083–2090

    Article  PubMed  Google Scholar 

  37. Randolph JJ (2005) Free-marginal multirater Kappa: an alternative to fleiss’ fixed-marginal multirater Kappa. Paper presented at: The Joensuu University Learning and Instruction Symposium October 14th, 2005; Joensuu, Finland

  38. Relvas C, Ramos A, Completo A, Simões JA (2011) Accuracy control of complex surfaces in reverse engineering. Int J Precis Eng Manuf 12(6):1035–1042

    Article  Google Scholar 

  39. Sandoz B, Badina A, Laporte S, Lambot K, Mitton D, Skalli W (2013) Quantitative geometric analysis of rib, costal cartilage and sternum from childhood to teenagehood. Med Biol Eng Comput 51(9):971–979

    Article  PubMed  Google Scholar 

  40. Sastre S, Popescu D, Núñez M, Pomes J, Tomas X, Peidro L (2010) Double-bundle versus single-bundle ACL reconstruction using the horizontal femoral position: a prospective, randomized study. Knee Surg Sports Traumatol Arthrosc 18(1):32–36

    Article  PubMed  Google Scholar 

  41. Sim J, Wright CC (2005) The Kappa statistics in reliability studies: use, interpretation, and sample size requirements. Phys Ther 85:257–269

    PubMed  Google Scholar 

  42. Steiner M (2009) Anatomic single-bundle ACL reconstruction. Sports Med Arthrosc Rev 17(4):247–251

    Article  Google Scholar 

  43. Suomalainen P, Järvelä T, Paakkala A, Kannus P, Järvinen M (2012) Double-bundle versus single-bundle anterior cruciate ligament reconstruction A prospective randomized study with 5-year results. Am J Sports Med 40(7):1511–1518

    Article  PubMed  Google Scholar 

  44. Takahashi M, Doi M, Abe M, Suzuki D, Nagano A (2006) Anatomical study of the femoral and tibial insertions of the anteromedial and posterolateral bundles of human anterior cruciate ligament. Am J Sports Med 34(5):787–792

    Article  PubMed  Google Scholar 

  45. van Eck CF (2010) Does the lateral intercondylar ridge disappear in ACL deficient patients? Knee Surg Sports Traumatol Arthrosc 18:1184–1188

    Article  PubMed  PubMed Central  Google Scholar 

  46. van Eck C, Samuelsson K, Vyas S, Dijk N, Karlsson J, Fu F (2011) Systematic review on cadaveric studies of anatomic anterior cruciate ligament reconstruction. Knee Surg Sports Traumatol Arthrosc 19(suppl 1):101–108

    PubMed Central  Google Scholar 

  47. van Overveld C, Wyvill B (1993) Shrinkwrap: an adaptive algorithm for polygonizing an implicit surface. The University of Calgary, Department of computer science, Research Report No. 93/514/19, March 1993

  48. Ziegler CG, Pietrini SD, Westerhaus BD et al (2011) Arthroscopically pertinent landmarks for tunnel positioning in single-bundle and double-bundle anterior cruciate ligament reconstructions. Am J Sports Med 39(4):743–752

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The authors wish to acknowledge Smith and Nephew Endoscopy for their funding support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel G. Norman.

Additional information

A correction to this article is available online at https://doi.org/10.1007/s11517-017-1753-4.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Norman, D.G., Getgood, A., Thornby, J. et al. Quantitative topographic anatomy of the femoral ACL footprint: a micro-CT analysis. Med Biol Eng Comput 52, 985–995 (2014). https://doi.org/10.1007/s11517-014-1196-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11517-014-1196-0

Keywords

Navigation