Skip to main content

Advertisement

Log in

Adaptive motion artefact reduction in respiration and ECG signals for wearable healthcare monitoring systems

  • Original Article
  • Published:
Medical & Biological Engineering & Computing Aims and scope Submit manuscript

Abstract

Wearable healthcare monitoring systems (WHMSs) have received significant interest from both academia and industry with the advantage of non-intrusive and ambulatory monitoring. The aim of this paper is to investigate the use of an adaptive filter to reduce motion artefact (MA) in physiological signals acquired by WHMSs. In our study, a WHMS is used to acquire ECG, respiration and triaxial accelerometer (ACC) signals during incremental treadmill and cycle ergometry exercises. With these signals, performances of adaptive MA cancellation are evaluated in both respiration and ECG signals. To achieve effective and robust MA cancellation, three axial outputs of the ACC are employed to estimate the MA by a bank of gradient adaptive Laguerre lattice (GALL) filter, and the outputs of the GALL filters are further combined with time-varying weights determined by a Kalman filter. The results show that for the respiratory signals, MA component can be reduced and signal quality can be improved effectively (the power ratio between the MA-corrupted respiratory signal and the adaptive filtered signal was 1.31 in running condition, and the corresponding signal quality was improved from 0.77 to 0.96). Combination of the GALL and Kalman filters can achieve robust MA cancellation without supervised selection of the reference axis from the ACC. For ECG, the MA component can also be reduced by adaptive filtering. The signal quality, however, could not be improved substantially just by the adaptive filter with the ACC outputs as the reference signals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Benesty J, Huang Y (2003) Adaptive signal processing: applications to real-world problems. Springer, Berlin, pp 129–153

    Book  Google Scholar 

  2. Black AM, Bambridge A, Kunst G, Millard RK (2001) Progress in non-invasive respiratory monitoring using uncalibrated breathing movement components. Physiol Meas 22(1):245–261

    Article  CAS  PubMed  Google Scholar 

  3. Chen L, McKenna T, Reisner A, Reifman J (2006) Algorithms to qualify respiratory data collected during the transport of trauma patients. Physiol Meas Sep 27(9):797–816

    Article  Google Scholar 

  4. Clifford GD, Behar J, Li Q, Rezek I (2012) Signal quality indices and data fusion for determining clinical acceptability of electrocardiograms. Physiol Meas Sep 33(9):1419–1433

    Article  CAS  Google Scholar 

  5. Cohen KP, Ladd WM, Beams DM, Sheers WS, Radwin RG, Tompkins WJ, Webster JG (1997) Comparison of impedance and inductance ventilation sensors on adults during breathing, motion, and simulated airway obstruction. IEEE Trans Biomed Eng 44(7):555–566

    Article  CAS  PubMed  Google Scholar 

  6. Coyle S, Lau KT, Moyna N, O’Gorman D, Diamond D, Di Francesco F, Costanzo D, Salvo P, Trivella MG, De Rossi DE, Taccini N, Paradiso R, Porchet JA, Ridolfi A, Luprano J, Chuzel C, Lanier T, Revol-Cavalier F, Schoumacker S, Mourier V, Chartier I, Convert R, De-Moncuit H, Bini C (2010) BIOTEX—biosensing textiles for personalised healthcare management. IEEE Trans Inf Technol Biomed 14(2):364–370

    Article  PubMed  Google Scholar 

  7. Dowling AV, Favre J, Andriacchi TP (2011) A wearable system to assess risk for anterior cruciate ligament injury during jump landing: measurements of temporal events, jump height, and sagittal plane kinematics. J Biomech Eng 133(7):071008

    Article  PubMed  Google Scholar 

  8. Fejzo Z, Lev-Ari L (1997) Adaptive Laguerre-lattice filters. IEEE Trans Signal Process 45(12):3006–3016

    Article  Google Scholar 

  9. Fiamma MN, Samara Z, Baconnier P, Similowski T, Straus C (2007) Respiratory inductive plethysmography to assess respiratory variability and complexity in humans. Respir Physiol Neurobiol 156(2):234–239

    Article  PubMed  Google Scholar 

  10. Frank TH, Blaumanis OR, Chen SH, Petrie RH, Gibbs RK, Wells RL, Johnson TR (1992) Noninvasive fetal ECG mode fetal heart rate monitoring by adaptive digital filtering. J Perinat Med 20(2):93–100

    Article  CAS  PubMed  Google Scholar 

  11. Goldman JM, Petterson MT, Kopotic RJ, Barker SJ (2000) Masimo signal extraction pulse oximetry. J Clin Monit Comput 16(7):475–483

    Article  CAS  PubMed  Google Scholar 

  12. Grossman P, Wilhelm FH, Spoerle M (2004) Respiratory sinus arrhythmia, cardiac vagal control, and daily activity. Am J Physiol Heart Circ Physiol 287(2):H728–H734

    Article  CAS  PubMed  Google Scholar 

  13. Han H, Kim J (2012) Artifacts in wearable photoplethysmographs during daily life motions and their reduction with least mean square based active noise cancellation method. Comput Biol Med 42(4):387–393

    Article  PubMed  Google Scholar 

  14. Haykin S (2001) Adaptive filter theory, 4th edn. Prentice-Hall, Upper Saadle River, pp 485–495

    Google Scholar 

  15. Iyer VK, Ploysongsang Y, Ramamoorthy PA (1990) Adaptive filtering in biological signal processing. Crit Rev Biomed Eng 17(6):531–584

    CAS  PubMed  Google Scholar 

  16. Keenan DB, Wilhelm FH (2005) Adaptive and wavelet filtering methods for improving accuracy of respiratory measurement. Biomed Sci Instrum 41:37–42

    PubMed  Google Scholar 

  17. Lanatà A, Scilingo EP, Nardini E, Loriga G, Paradiso R, De-Rossi D (2010) Comparative evaluation of susceptibility to motion artifact in different wearable systems for monitoring respiratory rate. IEEE Trans Inf Technol Biomed 14(2):378–386

    Article  PubMed  Google Scholar 

  18. Lee B, Han J, Baek HJ, Shin JH, Park KS, Yi WJ (2010) Improved elimination of motion artifacts from a photoplethysmographic signal using a Kalman smoother with simultaneous accelerometry. Physiol Meas 31(12):1585–1603

    Article  PubMed  Google Scholar 

  19. Li Q, Mark RG, Clifford GD (2008) Robust heart rate estimation from multiple asynchronous noisy sources using signal quality indices and a Kalman filter. Physiol Meas 29(1):15–32

    Article  PubMed Central  PubMed  Google Scholar 

  20. Liu SH (2011) Motion artifact reduction in electrocardiogram using adaptive filter. J Med Biol Eng 31(1):67–72

    Article  Google Scholar 

  21. Liu Y, Pecht MG (2011) Reduction of motion artifacts in electrocardiogram monitoring using an optical sensor. Biomed Instrum Technol 45(2):155–163

    Article  PubMed  Google Scholar 

  22. Martens SM, Mischi M, Oei SG, Bergmans JW (2006) An improved adaptive power line interference canceller for electrocardiography. IEEE Trans Biomed Eng 53(11):2220–2231

    Article  PubMed  Google Scholar 

  23. Masaoka Y, Homma I (1997) Anxiety and respiratory patterns: their relationship during mental stress and physical load. Int J Psychophysiol 27(2):153–159

    Article  CAS  PubMed  Google Scholar 

  24. Mundt CW, Montgomery KN, Udoh UE, Barker VN, Thonier GC, Tellier AM, Ricks RD, Darling RB, Cagle YD, Cabrol NA, Ruoss SJ, Swain JL, Hines JW, Kovacs GT (2005) A multiparameter wearable physiologic monitoring system for space and terrestrial applications. IEEE Trans Inf Technol Biomed 9(3):382–391

    Article  PubMed  Google Scholar 

  25. Nemati S, Malhotra A, Clifford GD (2010) Data fusion for improved respiration rate estimation. http://dspace.mit.edu/openaccess-disseminate/1721.1/67021

  26. Odman S, Oberg P (1982) Movement induced potentials in surface electrodes. Med Eng Comput 20:159–166

    Article  CAS  Google Scholar 

  27. Pereda E, De la Cruz DM, De Vera L, González JJ (2005) Comparing generalized and phase synchronization in cardiovascular and cardiorespiratory signals. IEEE Trans Biomed Eng 52(4):578–583

    Article  PubMed  Google Scholar 

  28. Poh MZ, Swenson NC, Picard RW (2010) Motion-tolerant magnetic earring sensor and wireless earpiece for wearable photoplethysmography. IEEE Trans Inf Technol Biomed 14(3):786–794

    Article  PubMed  Google Scholar 

  29. Raya MAD, Sison LG (2002) Adaptive noise cancelling of motion artifact in stress ECG signals using accelerometer. Annual International Conference of the IEEE Engineering in Medicine and Biology Society-EMBC, IEEE 2:1756–1757

    Google Scholar 

  30. Ritz T, Simon E, Trueba AF (2011) Stress-induced respiratory pattern changes in asthma. Psychosom Med 73(6):514–521

    Article  PubMed  Google Scholar 

  31. Rutherford JJ (2010) Wearable technology. Health-care solutions for a growing global population. IEEE Eng Med Biol Mag 29(3):19–24

    Article  PubMed  Google Scholar 

  32. Ryan KL, Rickards CA, Hinojosa-Laborde C, Gerhardt RT, Cain J, Convertino VA (2011) Advanced technology development for remote triage applications in bleeding combat casualties. US Army Med Dep J 2:61–72

    Google Scholar 

  33. Silva I, Lee J, Mark RG (2012) Signal quality estimation with multichannel adaptive filtering in intensive care settings. IEEE Trans Biomed Eng 59(9):2476–2485

    Article  PubMed  Google Scholar 

  34. Sörnmo L, Laguna P (2005) Bioelectrical signal processing in cardiac & neurological applications. Elsevier Academic, Burlington, pp 98–103

    Google Scholar 

  35. Such O (2007) Motion tolerance in wearable sensors—the challenge of motion artifact. Conf Proc IEEE Eng Med Biol Soc. IEEE, Lyon, pp 1542–1545

    Google Scholar 

  36. Teng XF, Zhang YT, Poon CC, Bonato P (2008) Wearable medical systems for p-Health. IEEE Rev Biomed Eng 1:62–74

    Article  PubMed  Google Scholar 

  37. Thakor NV, Zhu YS (1991) Applications of adaptive filtering to ECG analysis: noise cancellation and arrhythmia detection. IEEE Trans Biomed Eng 38(8):785–794

    Article  CAS  PubMed  Google Scholar 

  38. Tong DA, Bartels KA, Honeyager KS (2002) Adaptive reduction of motion artifact in the electrocardiogram. In: annual international conference of the IEEE Engineering in Medicine and Biology Society-EMBC, IEEE, 2:1403–1404

  39. Widrow B, Glover JR Jr, McCool JM, Kaunitz J, Williams CS, Hearn RH, Zeidler JR, Dong E Jr, Goodlin RC (1975) Adaptive noise cancelling: principles and applications. Proc of the IEEE 63(12):1695–1716

    Article  Google Scholar 

  40. Wu MC, Hu CK (2006) Empirical mode decomposition and synchrogram approach to cardiorespiratory synchronization. Phys Rev E 73(5):051917

    Article  Google Scholar 

  41. Yan YS, Zhang YT (2008) An efficient motion-resistant method for wearable pulse oximeter. IEEE Trans Inf Technol Biomed 12(3):399–405

    Article  PubMed  Google Scholar 

  42. Zhang ZB, Yu MS, Li RX, Wu TH, Wu JL (2006) Design of a wearable respiratory inductive plethysmograph and its applications. Space Med Med Eng 19:377–381

    Google Scholar 

  43. Zhang YT, Liu Q, Poon CCY, Zheng YL, Gao H (2011) Cardiovascular health informatics: wearable intelligent sensors for e-health (WISE). In: 2011 IEEE technology time machine symposium on technologies beyond 2020 (TTM). IEEE, Hong Kong, p 1

  44. Zhang ZB, Shen YH, Wang WD, Wang BQ, Zheng JW (2011) Design and implementation of sensing shirt for ambulatory cardiopulmonary monitoring. J Med Bio Eng 31(3):207–215

    Article  Google Scholar 

Download references

Acknowledgments

This project was supported by Beijing Natural Science Foundation (Grant Numbers: 3102028, 3122034) and General Logistics Science Foundation (Grant Number: CWS11C108). The work was also funded in part by the National Institute of Biomedical Imaging and Bio-engineering and by the National Institute of General Medical Sciences, under NIH cooperative agreement U01-EB-008577 and NIH grant R01- EB001659.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weidong Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Z., Silva, I., Wu, D. et al. Adaptive motion artefact reduction in respiration and ECG signals for wearable healthcare monitoring systems. Med Biol Eng Comput 52, 1019–1030 (2014). https://doi.org/10.1007/s11517-014-1201-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11517-014-1201-7

Keywords

Navigation