Skip to main content
Log in

Online apnea–bradycardia detection based on hidden semi-Markov models

  • Original Article
  • Published:
Medical & Biological Engineering & Computing Aims and scope Submit manuscript

Abstract

In this paper, we propose a new online apnea–bradycardia detection scheme that takes into account not only the instantaneous values of time series, but also their temporal evolution. The detector is based on a set of hidden semi-Markov models, representing the temporal evolution of beat-to-beat interval (RR interval) time series. A preprocessing step, including quantization and delayed version of the observation vector, is also proposed to maximize detection performance. This approach is quantitatively evaluated through simulated and real signals, the latter being acquired in neonatal intensive care units (NICU). Compared to two conventional detectors used in NICU, our best detector shows an improvement on average of around 15 % in sensitivity and 7 % in specificity. Furthermore, a reduced detection delay of approximately 2 s is also observed with respect to conventional detectors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Ahlborn V, Bohnhorst B, Peter C, Poets C (2000) False alarms in very low birthweight infants: comparison between three intensive care monitoring systems. Acta Paediatr 89(5):571–576

    Article  CAS  PubMed  Google Scholar 

  2. Altuve M, Carrault G, Beuchee A, Flamand C, Pladys P, Hernandez AI (2012) Comparing hidden markov model and hidden semi-Markov model based detectors of apnea–bradycardia episodes in preterm infants. In: Computing in cardiology (CinC), Krakow, pp 389–392.

  3. Altuve M, Carrault G, Cruz J, Beuchee A, Pladys P, Hernandez A (2011) Multivariate ecg analysis for apnoea-bradycardia detection and characterisation in preterm infants. Int J Biomed Eng Technol 5(2):247–265

    Article  Google Scholar 

  4. Beuchée A (2005) Intérêt de l’analyse de la variabilité du rythme cardiaque en néonatalogie. Comportement des systèmes de régulation cardiovasculaire dans le syndrome apnée/bradycardie du nouveau-né. Ph.D. thesis, Université de Rennes 1

  5. Bishop C (1995) Neural networks for pattern recognition. Oxford university press, Oxford

    Google Scholar 

  6. Bitan Y, Meyer J, Shinar D, Zmora E (2000) Staff actions and alarms in a neonatal intensive care unit. In: Proceedings of the human factors and ergonomics society annual meeting, vol 44. SAGE Publications, pp 17–20

  7. Bitan Y, Meyer J, Shinar D, Zmora E (2004) Nurses’ reactions to alarms in a neonatal intensive care unit. Cognit Technol Work 6(4):239–246

    Article  Google Scholar 

  8. Bohnhorst B, Peter CS, Poets CF (2000) Pulse oximeters’ reliability in detecting hypoxemia and bradycardia: comparison between a conventional and two new generation oximeters. Crit Care Med 28(5):1565–1568

    Article  CAS  PubMed  Google Scholar 

  9. Brockmann PE, Wiechers C, Pantalitschka T, Diebold J, Vagedes J, Poets CF (2013) Under-recognition of alarms in a neonatal intensive care unit. Arch Dis Child Ed 98(6):F524–F527. doi:10.1136/archdischild-2012-303369

    Article  Google Scholar 

  10. Chambrin MC et al (2001) Alarms in the intensive care unit: how can the number of false alarms be reduced? Crit Care 5(4):184–188

    Article  CAS  Google Scholar 

  11. Chatow U, Davidson S, Reichman B, Akselrod S (1995) Development and maturation of the autonomic nervous system in premature and full-term infants using spectral analysis of heart rate fluctuations. Pediatr Res 37(3):294

    Article  CAS  PubMed  Google Scholar 

  12. Cruz J, Hernández A, Wong S, Carrault G, Beuchee A (2006) Algorithm fusion for the early detection of apnea–bradycardia in preterm infants. In: Computers in Cardiology, Valencia, pp 473–476.

  13. Cvach M (2012) Monitor alarm fatigue: an integrative review. Biomed Instrum Technol 46(4):268–277

    Article  Google Scholar 

  14. Derrode S, Pieczynski W (2004) Signal and image segmentation using pairwise Markov chains. In: IEEE Trans Signal Process 52(9):2477–2489

    Article  Google Scholar 

  15. Dumont J (2008) Fouille de dynamiques multivariées, application à des données temporelles en cardiologie. Ph.D. thesis, Université de Rennes 1

  16. Dumont J, Carrault G, Gomis P, Wagner G, Hernández A (2009) Detection of myocardial ischemia with hidden semi-Markovian models. Comput Cardiol 2009:121–124

    Google Scholar 

  17. Dumont J, Hernández AI, Carrault G (2010) Improving ecg beats delineation with an evolutionary optimization process. IEEE Trans Biomed Eng 57(3):607–15

    Article  Google Scholar 

  18. Dumont J, Hernandez AI, Fleureau J, Carrault G (2008) Modelling temporal evolution of cardiac electrophysiological features using hidden semi-Markov models. In: Engineering in medicine and biology society, 2008. EMBS 2008. 30th annual international conference of the IEEE. IEEE, pp 165–168

  19. Fahrmeir L (1992) Posterior mode estimation by extended Kalman filtering for multivariate dynamic generalized linear models. J Am Stat Assoc 87(418):501–509

    Article  Google Scholar 

  20. Ferguson J (1980) Variable duration models for speech. In: Proceedings of the symposium on the application of hidden Markov models to text and speech, vol 1, pp 143–179

    Google Scholar 

  21. Fitzhugh R (1961) Impulses and physiological states in theoretical models of nerve membrane. Biophys J 1(6):445–466

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Forney G Jr (1973) The viterbi algorithm. Proc IEEE 61(3):268–278

    Article  Google Scholar 

  23. Freudenthal A, Van Stuijvenberg M, Van Goudoever JB (2013) A quiet NICU for improved infants’ health, development and well-being: a systems approach to reducing noise and auditory alarms. Cogn Technol Work 15(3):329–345

  24. Garcia SP, Almeida JS (2006) Multivariate phase space reconstruction by nearest neighbor embedding with different time delays. Phys Rev E 72(2):027205. doi:10.1103/PhysRevE.72.027205

  25. Houtekamer P, Mitchell H (2001) A sequential ensemble Kalman filter for atmospheric data assimilation. Mon Weather Rev 129(2):123–137

    Article  Google Scholar 

  26. Imhoff M, Fried R (2009) The crying wolf: still crying? Anesth Analg 108(5):1382–1383

    Article  Google Scholar 

  27. Janvier A, Khairy M, Kokkotis A, Cormier C, Messmer D, Barrington K (2004) Apnea is associated with neurodevelopmental impairment in very low birth weight infants. J Perinatol 24(12):763–768

    Article  PubMed  Google Scholar 

  28. Kalman R et al (1960) A new approach to linear filtering and prediction problems. J Basic Eng 82(1):35–45

    Article  Google Scholar 

  29. Kong L, Yang C, Wang Y, Gui W (2009) Generic phase space reconstruction method of multivariate time series. In: Control and decision conference, 2009. CCDC’09. Chinese, pp 3752–3755

  30. Lawless ST (1994) Crying wolf: false alarms in a pediatric intensive care unit. Crit Care Med 22(6):981–985

    Article  CAS  PubMed  Google Scholar 

  31. Lee HJ, Choi JH, Min SJ, Kim DH, Kim HS (2010) Comparison of the clinical performance between two pulse oximeters in nicu: Nellcor n-595 versus masimo set. J Korean Soc Neonatol 17(2):245–249

    Article  Google Scholar 

  32. Murphy K (2002) Dynamic bayesian networks: representation, inference and learning. Ph.D. thesis, Citeseer

  33. Pichardo R, Adam JS, Rosow E, Bronzino J, Eisenfeld L (2003) Vibrotactile stimulation system to treat apnea of prematurity. Biomed Instrum Technol 37(1):34–40

    Article  PubMed  Google Scholar 

  34. Pieczynski W (2003) Pairwise markov chains. IEEE Trans Pattern Anal Mach Intell 25(5):634–639. doi:10.1109/TPAMI.2003.1195998

  35. Pillekamp F, Hermann C, Keller T, von Gontard A, Kribs A, Roth B (2007) Factors influencing apnea and bradycardia of prematurity-implications for neurodevelopment. Neonatology 91(3):155

    Article  CAS  PubMed  Google Scholar 

  36. Poets C, Stebbens V, Samuels M, Southall D (1993) The relationship between bradycardia, apnea, and hypoxemia in preterm infants. Pediatr Res 34(2):144

    Article  CAS  PubMed  Google Scholar 

  37. Portet F, Gao F, Hunter J, Sripada S (2007) Evaluation of on-line bradycardia boundary detectors from neonatal clinical data. In: Engineering in medicine and biology society, 2007. EMBS 2007. 29th annual international conference of the IEEE, pp 3288–3291

  38. Rabiner LR (1989) A tutorial on hidden Markov models and selected applications in speech recognition. Proc IEEE 77(2):257–286

    Article  Google Scholar 

  39. Raman H, Sunilkumar N (1995) Multivariate modelling of water resources time series using artificial neural networks. Hydrol Sci J 40(2):145–164

    Article  Google Scholar 

  40. Schwarz G (1978) Estimating the dimension of a model. Ann Stat 6(2):461–464

    Article  Google Scholar 

  41. Suzuki T, Ikeguchi T, Suzuki M (2003) Multivariable nonlinear analysis of foreign exchange rates. Phys A Stat Mech Appl 323:591–600

    Article  Google Scholar 

  42. Task Force (1996) Heart rate variability: standards of measurement, physiological interpretation and clinical use. Task force of the European society of cardiology and the north American society of pacing and electrophysiology. Circulation 93(5):1043–65

  43. Viterbi A (1967) Error bounds for convolutional codes and an asymptotically optimum decoding algorithm. IEEE Trans Inf Theory 13(2):260–269

    Article  Google Scholar 

  44. Yu SZ (2010) Hidden semi-Markov models. Artif Intell 174(2):215–243

    Article  Google Scholar 

  45. Zweig G, Russell S (1998) Speech recognition with dynamic Bayesian networks. In: Proceedings of the national conference on artificial intelligence, pp 173–180

Download references

Acknowledgments

This work was partly funded by the ECOS NORD project V09S04.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miguel Altuve.

Appendices

Appendix 1: The viterbi algorithm

The Viterbi algorithm has first appeared in the literature of coding in 1967 [43]. This algorithm selects the states individually most likely, in order to find the states sequence most likely associated with the observed sequence. The algorithm includes a step of recursion which travels the signal and records the states that maximize \({\mathcal {L}}(O_{1:T}|\lambda )\), and a step of back propagation that travels the signal in the opposite direction, starting from the state for which the likelihood at time \(T\) is maximum, and taking into account the previous states stored in the recursion step.

To find the best state sequence \(S_{1:T} = S_1, \ldots , S_T\) for the sequence of observation \(O_{T} \triangleq O_1, \ldots , O_T\),

$$\begin{aligned} \delta _t(i) \triangleq \underset{s_{1:t-1}}{\max }\big ( P(s_1, s_2,\ldots ,s_t = i, o_{1:t}|\lambda ) \big ) \end{aligned}$$
(14)

represents the maximum likelihood of a single path until time \(t\), which takes into account the first \(t\) observations and stops in state \(i\). By induction we have

$$\begin{aligned} \delta _{t+1}(j) = \underset{i \in \mathcal {S}}{\max } \big ( \delta _{t}(i) a_{ij} \big ) b_j(o_{t+1}). \end{aligned}$$
(15)

The argument that maximizes Eq. 15 for each \(t\) and \(j\), is recorded through the array \(\varPsi _t(j)\). The full procedure to find the best state sequence is:

  • Initialization:

    $$\begin{aligned} \delta _1(i)&= \pi (i) b_i(o_1), \quad i \in \mathcal {S} \\ \varPsi _1(i)&= 0. \end{aligned}$$
    (16)
  • Recursion:

    $$\begin{aligned} \delta _t(j)&= \underset{i \in \mathcal {S}}{\max } \big ( \delta _{t-1}(i) a_{ij} \big ) b_j(o_t), \quad 2 \le t \le T, j \in \mathcal {S} \\ \varPsi _t(j)&= \underset{i \in \mathcal {S}}{\mathrm{arg\,max }} \big ( \delta _{t-1}(i) a_{ij} \big ), \quad 2 \le t \le T, j \in \mathcal {S} \end{aligned}$$
    (17)
  • Termination:

    $$\begin{aligned} P^*&= \underset{i \in \mathcal {S}}{\max } \big ( \delta _T(i)\big ) \\ i_T^*&= \underset{i \in \mathcal {S}}{\mathrm{arg\,max }} \big ( \delta _T(i) \big ). \end{aligned}$$
    (18)
  • backpropagation (path obtained):

    $$\begin{aligned} i_t^* = \varPsi _{t+1}(i_{t+1}^*), \quad t = T-1,T-2,\ldots ,,1. \end{aligned}$$
    (19)

Appendix 2: The viterbi algorithm extended to HSMM

The quantity

$$\begin{aligned} \delta _t(i,d) \triangleq \underset{s_{1:t-d}}{\max }\big ( P(s_{1:t-d}, S_{t-d+1:t} = i, o_{1:t}|\lambda ) \big ) \end{aligned}$$
(20)

represents the maximum likelihood of a single path until time \(t\), which takes into account the first \(t\) observations and stops at the state \(i\) of length \(d\). By induction we have:

$$\begin{aligned} \delta _{t+d}(j,d) = \underset{i \in \mathcal {S} \setminus \{j\}, d' \in \mathcal {D}}{\max } \big ( \delta _{t}(i,d') a_{ij} \big ) p_j(d) b_j(o_{t+1:t+d}). \end{aligned}$$
(21)

The array \(\varPsi _t(j,d)\) is used to record the states sequence and times that maximize 21. The complete procedure is as follows:

  • Initialization:

    $$\begin{aligned} \delta _1(i)&= \pi (i) b_i(o_1), \quad i \in \mathcal {S} \\ \varPsi _1(i)&= 0. \end{aligned}$$
    (22)
  • Recursion:

    $$\begin{aligned} \delta _t(j,d)&= \underset{i \in \mathcal {S} \setminus \{j\}, d' \in \mathcal {D}}{\max } \big ( \delta _{t-d}(i,d') a_{ij} \big ) p_j(d) b_j(o_{t-d+1:t}), \\&\quad 2 \le t \le T, j \in \mathcal {S}, d \in \mathcal {D} \\ \varPsi _t(j,d)&= \underset{i \in \mathcal {S} \setminus \{j\}, d' \in \mathcal {D}}{\mathrm{arg\,max }} \big ( \delta _{t-d}(i,d') a_{ij} \big ), \\&\quad 2 \le t \le T, j \in \mathcal {S} , d \in \mathcal {D}. \end{aligned}$$
    (23)
  • Termination:

    $$\begin{aligned} P^*&= \underset{i \in \mathcal {S}, d \in \mathcal {D}}{\max } \big ( \delta _T(i,d)\big ) \\ (i_T^*,d_T^*)&= \underset{i \in \mathcal {S},d \in \mathcal {D}}{\mathrm{arg\,max }} \big ( \delta _T(i,d) \big ). \end{aligned}$$
    (24)
  • backpropagation (path obtained):

    $$\begin{aligned} (i_t^*,d_t^*) = \varPsi _{t+1}(i_{t+1}^*,d_{t+1}^*), \quad t = T-d_t^*,\ldots ,1. \end{aligned}$$
    (25)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Altuve, M., Carrault, G., Beuchée, A. et al. Online apnea–bradycardia detection based on hidden semi-Markov models. Med Biol Eng Comput 53, 1–13 (2015). https://doi.org/10.1007/s11517-014-1207-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11517-014-1207-1

Keywords

Navigation