Skip to main content

Advertisement

Log in

Effects of a carotid covered stent with a novel membrane design on the blood flow regime and hemodynamic parameters distribution at the carotid artery bifurcation

  • Original Article
  • Published:
Medical & Biological Engineering & Computing Aims and scope Submit manuscript

Abstract

We have recently developed a novel membrane design for carotid covered stents that prevents emboli while preserving the external carotid artery (ECA) branch flow. Our earlier in vitro studies have shown that this novel design can maintain more than 83 % of the original ECA flow and has the potential to considerably reduce the chance of emboli release as compared to bare metal stents. In the present study, utilizing computational fluid dynamics simulations and fluid–structure interaction analyses, we further investigated the influence of this novel covered stent on the blood flow regime and distribution of hemodynamic parameters at the carotid artery bifurcation and within the branches. Simulation results of the effect of the covered stent on the flow division at the carotid bifurcation were comparable with the earlier experimental results and further verified that this covered stent can considerably preserve the ECA flow. The results also showed that this covered stent may affect the flow regime and the distribution of hemodynamic parameters at the opening of the ECA branch and at the apex of the divider wall. These altered local hemodynamic characteristics may promote the post-stenting patency of the ECA branch. Evaluation of shear-induced platelet activation suggested that activation of platelets due to the blood flow through this membrane is unlikely. However, some slow-flow regions near the stent membrane around the ECA opening may induce platelet aggregation and thrombus formation. This study further demonstrated the potential of this novel covered-stent design for the treatment of carotid atherosclerotic stenosis. Future in vivo investigations of the biological effects and mechanical performance of this covered-stent design (e.g., its thrombogenicity potential and biocompatibility) are warranted.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Bluestein D, Niu L, Schoephoerster RT, Dewanjee MK (1997) Fluid mechanics of arterial stenosis: relationship to the development of mural thrombus. Ann Biomed Eng 25:344–356

    Article  CAS  PubMed  Google Scholar 

  2. Buchanan JR, Kleinstreuer C, Hyun S, Truskey GA (2003) Hemodynamics simulation and identification of susceptible sites of atherosclerotic lesion formation in a model abdominal aorta. J Biomech 36:1185–1196

    Article  CAS  PubMed  Google Scholar 

  3. Caro CG, Fitz-Gerald JM, Schroter RC (1971) Atheroma and arterial wall shear. Observation, correlation and proposal of a shear dependent mass transfer mechanism for atherogenesis. Proceed R Soc Lond Ser B Biol Sci 177:109–159

    Article  CAS  Google Scholar 

  4. Chua LP, Su B, Lim TM, Zhou T (2007) Numerical simulation of an axial blood pump. Artif Organs 31:560–570

    Article  PubMed  Google Scholar 

  5. Connors Iii JJ, Seidenwurm D, Wojak JC, Hurst RW, Jensen ME, Wallace R, Tomsick T, Barr J, Kerber C, Russell E, Nesbit GM, Fox AJ, Tsai FY (2000) Treatment of atherosclerotic disease at the cervical carotid bifurcation: current status and review of the literature. Am J Neuroradiol 21:444–450

    Google Scholar 

  6. Davies PF, Polacek DC, Shi C, Helmke BP (2002) The convergence of haemodynamics, genomics, and endothelial structure in studies of the focal origin of atherosclerosis. Biorheology 39:299–306

    CAS  PubMed Central  PubMed  Google Scholar 

  7. DePaola N, Gimbrone MA Jr, Davies PF, Dewey CF Jr (1992) Vascular endothelium responds to fluid shear stress gradients. Arterioscler Thromb 12:1254–1257

    Article  CAS  PubMed  Google Scholar 

  8. Donovan FM Jr, McIlwain RW, Mittmann DH, Taylor BC (1994) Experimental correlations to predict fluid resistance for simple pulsatile laminar flow of incompressible fluids in rigid tubes. J Fluid Eng Trans ASME 116:516–521

    Article  Google Scholar 

  9. Friedman MH, Bargeron CB, Deters OJ, Hutchins GM, Mark FF (1987) Correlation between wall shear and intimal thickness at a coronary artery branch. Atherosclerosis 68:27–33

    Article  CAS  PubMed  Google Scholar 

  10. Ghista DN, Kabinejadian F (2013) Coronary artery bypass grafting hemodynamics and anastomosis design: a biomedical engineering review. BioMed Eng Online 12(1):129

    Article  PubMed Central  PubMed  Google Scholar 

  11. He X, Ku DN (1996) Pulsatile flow in the human left coronary artery bifurcation: average conditions. J Biomech Eng 118:74–82

    Article  CAS  PubMed  Google Scholar 

  12. Hellums JD (1994) 1993 whitaker lecture: biorheology in thrombosis research. Ann Biomed Eng 22:445–455

    Article  CAS  PubMed  Google Scholar 

  13. Himburg HA, Grzybowski DM, Hazel AL, LaMack JA, Li XM, Friedman MH (2004) Spatial comparison between wall shear stress measures and porcine arterial endothelial permeability. Am J Physiol Heart Circ Physiol 286:H1916–H1922

    Article  CAS  PubMed  Google Scholar 

  14. Ho P, Leo HL, Cui F, Ng SH, Kabinejadian F (2013) “Membrane for covering a peripheral surface of a stent,” (PCT) WO/2013/055293

  15. Hofer M, Rappitsch G, Perktold K, Trubel W, Schima H (1996) Numerical study of wall mechanics and fluid dynamics in end-to-side anastomoses and correlation to intimal hyperplasia. J Biomech 29:1297–1308

    Article  CAS  PubMed  Google Scholar 

  16. Hoi Y, Wasserman BA, Xie YJ, Najjar SS, Ferruci L, Lakatta EG, Gerstenblith G, Steinman DA (2010) Characterization of volumetric flow rate waveforms at the carotid bifurcations of older adults. Physiol Meas 31:291–302

    Article  PubMed Central  PubMed  Google Scholar 

  17. Hughes PE, How TV (1995) Flow structures at the proximal side-to-end anastomosis. Influence of geometry and flow division. J Biomech Eng 117:224–236

    Article  CAS  PubMed  Google Scholar 

  18. Hughes TJR, Liu WK, Zimmermann TK (1981) Lagrangian-Eulerian finite element formulation for incompressible viscous flows. Comput Methods Appl Mech Eng 29:329–349

    Article  Google Scholar 

  19. Ishibashi H, Sunamura M, Karino T (1995) Flow patterns and preferred sites of intimal thickening in end-to-end anastomosed vessels. Surgery 117:409–420

    Article  CAS  PubMed  Google Scholar 

  20. Kabinejadian F, Ghista DN (2012) Compliant model of a coupled sequential coronary arterial bypass graft: effects of vessel wall elasticity and non-newtonian rheology on blood flow regime and hemodynamic parameters distribution. Med Eng Phys 34:860–872

    Article  PubMed  Google Scholar 

  21. Kabinejadian F, Chua LP, Ghista DN, Sankaranarayanan M, Tan YS (2010) A novel coronary artery bypass graft design of sequential anastomoses. Ann Biomed Eng 38:3135–3150

    Article  PubMed  Google Scholar 

  22. Kabinejadian F, Chua LP, Ghista DN, Tan YS (2010) Cabg models flow simulation study on the effects of valve remnants in the venous graft. J Mech Med Biol 10:593–609

    Article  Google Scholar 

  23. Kabinejadian F, Cui F, Zhang Z, Ho P, Leo HL (2013) A novel carotid covered stent design: in vitro evaluation of performance and influence on the blood flow regime at the carotid artery bifurcation. Ann Biomed Eng 41:1990–2002

    Article  PubMed  Google Scholar 

  24. Ku DN, Giddens DP, Zarins CK, Glagov S (1985) Pulsatile flow and atherosclerosis in the human carotid bifurcation. Positive correlation between plaque location and low and oscillating shear stress. Arteriosclerosis 5:293–302

    Article  CAS  PubMed  Google Scholar 

  25. Lee KW, Wood NB, Xu XY (2004) Ultrasound image-based computer model of a common carotid artery with a plaque. Med Eng Phys 26:823–840

    Article  CAS  PubMed  Google Scholar 

  26. Lee SW, Antiga L, Steinman DA (2009) Correlations among indicators of disturbed flow at the normal carotid bifurcation. J Biomech Eng 131(6):061013

    Article  PubMed  Google Scholar 

  27. Ma P, Li X, Ku DN (1997) Convective mass transfer at the carotid bifurcation. J Biomech 30:565–571

    Article  CAS  PubMed  Google Scholar 

  28. Malek AM, Alper SL, Izumo S (1999) Hemodynamic shear stress and its role in atherosclerosis. J Am Med Assoc 282:2035–2042

    Article  CAS  Google Scholar 

  29. Morlacchi S, Keller B, Arcangeli P, Balzan M, Migliavacca F, Dubini G, Gunn J, Arnold N, Narracott A, Evans D, Lawford P (2011) Hemodynamics and in-stent restenosis: micro-ct images, histology, and computer simulations. Ann Biomed Eng 39:2615–2626

    Article  PubMed  Google Scholar 

  30. Perktold K, Rappitsch G (1995) Computer simulation of local blood flow and vessel mechanics in a compliant carotid artery bifurcation model. J Biomech 28:845–856

    Article  CAS  PubMed  Google Scholar 

  31. Ramstack JM, Zuckerman L, Mockros LF (1979) Shear-induced activation of platelets. J Biomech 12:113–125

    Article  CAS  PubMed  Google Scholar 

  32. Rittgers SE, Karayannacos PE, Guy JF (1978) Velocity distribution and intimal proliferation in autologous vein grafts in dogs. Circ Res 42:792–801

    Article  CAS  PubMed  Google Scholar 

  33. Sheriff J, Soares JS, Xenos M, Jesty J, Bluestein D (2013) Evaluation of shear-induced platelet activation models under constant and dynamic shear stress loading conditions relevant to devices. Ann Biomed Eng 41:1279–1296

    Article  PubMed Central  PubMed  Google Scholar 

  34. Sunamura M, Ishibashi H, Karino T (2007) Flow patterns and preferred sites of intimal thickening in diameter-mismatched vein graft interpositions. Surgery 141:764–776

    Article  PubMed  Google Scholar 

  35. White SS, Zarins CK, Giddens DP, Bassiouny H, Loth F, Jones SA, Glagov S (1993) Hemodynamic patterns in two models of end-to-side vascular graft anastomoses: effects of pulsatility, flow division, reynolds number, and hood length. J Biomech Eng 115:104–111

    Article  CAS  PubMed  Google Scholar 

  36. Womersley JR (1955) Method for the calculation of velocity, rate of flow and viscous drag in arteries when the pressure gradient is known. J Physiol 127:553–563

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  37. Wurzinger LJ, Opitz R, Wolf M, Schmid-Schonbein H (1985) ‘Shear induced platelet activation’—a critical reappraisal. Biorheology 22:399–413

    CAS  PubMed  Google Scholar 

  38. Wurzinger LJ, Opitz R, Eckstein H (1986) Mechanical bloodtrauma. An overview. Angeiologie 38:81–97

    Google Scholar 

  39. Zhao SZ, Xu XY, Hughes AD, Thom SA, Stanton AV, Ariff B, Long Q (2000) Blood flow and vessel mechanics in a physiologically realistic model of a human carotid arterial bifurcation. J Biomech 33:975–984

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This project is financially supported by Biomedical Engineering Programme (BEP) of the Agency for Science, Technology and Research (A*STAR), under grant BEP-1021480004.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hwa Liang Leo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kabinejadian, F., Cui, F., Su, B. et al. Effects of a carotid covered stent with a novel membrane design on the blood flow regime and hemodynamic parameters distribution at the carotid artery bifurcation. Med Biol Eng Comput 53, 165–177 (2015). https://doi.org/10.1007/s11517-014-1222-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11517-014-1222-2

Keywords

Navigation