Skip to main content

Advertisement

Log in

The influence of intraluminal thrombus on noninvasive abdominal aortic aneurysm wall distensibility measurement

  • Original Article
  • Published:
Medical & Biological Engineering & Computing Aims and scope Submit manuscript

Abstract

Abdominal aortic aneurysm wall distensibility can be estimated by measuring pulse pressure and the corresponding sac volume change, which can be obtained by measuring wall displacement. This approach, however, may introduce error if the role of thrombus in assisting the wall in bearing the pulse pressure loading is neglected. Our aim was to introduce a methodology for evaluating and potentially correcting this error in estimating distensibility. Electrocardiogram-gated computed tomography images of eleven patients were obtained, and the volume change between diastole and systole was measured. Using finite element procedures, we determined the equivalent pulse pressure loading that should be applied to the wall of a model where thrombus was digitally removed, to yield the same sac volumetric increase caused by applying the luminal pulse pressure to the model with thrombus. The equivalent instead of the measured pulse pressure was used in the distensibility expression. For a relative volumetric thrombus deposition (V ILT) of 50 %, a 62 % distensibility underestimation resulted when thrombus role was neglected. A strong linear correlation was observed between distensibility underestimation and V ILT. To assess the potential value of noninvasive wall distensibility measurement in rupture risk stratification, the role of thrombus on wall loading should be further investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Adolph R, Vorp DA, Steed DL, Webster MW, Kameneva MV, Watkins SC (1997) Cellular content and permeability of intraluminal thrombus in abdominal aortic aneurysm. J Vasc Surg 25:916–926

    Article  CAS  PubMed  Google Scholar 

  2. Antiga L, Piccinelli M, Botti L, Ene-Iordache B, Remuzzi A, Steinman DA (2008) An image-based modeling framework for patient-specific computational hemodynamics. Med Biol Eng Comput 46:1097–1112

    Article  PubMed  Google Scholar 

  3. Ashton JH, Vande Geest JP, Simon BR, Haskett DG (2009) Compressive mechanical properties of the intraluminal thrombus in abdominal aortic aneurysms and fibrin-based thrombus mimics. J Biomech 42:197–201

    Article  PubMed Central  PubMed  Google Scholar 

  4. Boschetti F, Di Martino EM, Giota G (2007) A poroviscoelastic model of intraluminal thrombus from abdominal aortic aneurysms. In: 2007 Summer bioengineering conference, Keystone CO

  5. Breeuwer M, de Putter S, Kose U, Speelman L, Visser K, Gerritsen F, Hoogeveen R, Krams R, van den Bosch H, Buth J, Gunther T, Wolters B, van Dam E, van de Vosse F (2008) Towards patient-specific risk assessment of abdominal aortic aneurysm. Med Biol Eng Comput 46:1085–1095

    Article  CAS  PubMed  Google Scholar 

  6. Collet JP, Shuman H, Ledger RE, Lee S, Weisel JW (2005) The elasticity of an individual fibrin fiber in a clot. Proc Natl Acad Sci U S A 102:9133–9137

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  7. Di Martino E, Mantero S, Inzoli F, Melissano G, Astore D, Chiesa R, Fumero R (1998) Biomechanics of abdominal aortic aneurysm in the presence of endoluminal thrombus: experimental characterisation and structural static computational analysis. Eur J Vasc Endovasc Surg 15:290–299

    Article  PubMed  Google Scholar 

  8. Di Martino ES, Bohra A, Van de Geest JP, Gupta N, Makaroun MS, Vorp DA (2006) Biomechanical properties of ruptured versus electively repaired abdominal aortic aneurysm wall tissue. J Vasc Surg 43:570–576 (discussion 576)

    Article  PubMed  Google Scholar 

  9. Doyle BJ, Callanan A, McGloughlin TM (2007) A comparison of modelling techniques for computing wall stress in abdominal aortic aneurysms. Biomed Eng Online 6:38

    Article  PubMed Central  PubMed  Google Scholar 

  10. Gasser TC, Gorgulu G, Folkesson M, Swedenborg J (2008) Failure properties of intraluminal thrombus in abdominal aortic aneurysm under static and pulsating mechanical loads. J Vasc Surg 48:179–188

    Article  PubMed  Google Scholar 

  11. Gasser TC, Martufi G, Auer M, Folkesson M, Swedenborg J (2010) Micromechanical characterization of intra-luminal thrombus tissue from abdominal aortic aneurysms. Ann Biomed Eng 38:371–379

    Article  PubMed  Google Scholar 

  12. Govindjee S, Mihalic P (1998) Computational methods for inverse deformations in quasi-incompressible finite elasticity. Int J Numer Meth Eng 43:821–838

    Article  Google Scholar 

  13. He CM, Roach MR (1994) The composition and mechanical properties of abdominal aortic aneurysms. J Vasc Surg 20:6–13

    Article  CAS  PubMed  Google Scholar 

  14. Helderman F, Manoch IJ, Breeuwer M, Kose U, Schouten O, van Sambeek MR, Poldermans D, Pattynama PT, Wisselink W, van der Steen AF, Krams R (2008) A numerical model to predict abdominal aortic aneurysm expansion based on local wall stress and stiffness. Med Biol Eng Comput 46:1121–1127

    Article  CAS  PubMed  Google Scholar 

  15. Hellenthal FA, Geenen IL, Teijink JA, Heeneman S, Schurink GW (2009) Histological features of human abdominal aortic aneurysm are not related to clinical characteristics. Cardiovasc Pathol 18:286–293

    Article  PubMed  Google Scholar 

  16. Hinnen JW, Koning OH, Visser MJ, Van Bockel HJ (2005) Effect of intraluminal thrombus on pressure transmission in the abdominal aortic aneurysm. J Vasc Surg 42:1176–1182

    Article  PubMed  Google Scholar 

  17. Kirk B, Peterson J, Stogner R, Carey G (2006) libMesh: a C++ library for parallel adaptive mesh refinement/coarsening simulations. Eng with Comput 22:237–254

    Article  Google Scholar 

  18. Kontopodis N, Metaxa E, Pagonidis K, Ioannou C, Papaharilaou Y (2013) Deformation and distensibility distribution along the abdominal aorta in the presence of aneurysmal dilatation. J Cardiovasc Surg (Torino) (in press)

  19. Li ZY, Tang TY, Soh E, See TC, Gillard JH (2008) Impact of calcification and intraluminal thrombus on the computed wall stresses of abdominal aortic aneurysm. J Vasc Surg 47:928–935

    Article  PubMed  Google Scholar 

  20. MacSweeney ST (1999) Mechanical properties of abdominal aortic aneurysm and prediction of risk of rupture. Cardiovasc Surg 7:158–159

    Article  CAS  PubMed  Google Scholar 

  21. Merkx MA, van’t Veer M, Speelman L, Breeuwer M, Buth J, van de Vosse FN (2009) Importance of initial stress for abdominal aortic aneurysm wall motion: dynamic MRI validated finite element analysis. J Biomech 42:2369–2373

    Article  CAS  PubMed  Google Scholar 

  22. Meyer CA, Guivier-Curien C, Moore JE Jr (2010) Trans-thrombus blood pressure effects in abdominal aortic aneurysms. J Biomech Eng 132:071005

    Article  PubMed  Google Scholar 

  23. Molacek J, Baxa J, Houdek K, Treska V, Ferda J (2011) Assessment of abdominal aortic aneurysm wall distensibility with electrocardiography-gated computed tomography. Ann Vasc Surg 25:1036–1042

    Article  PubMed  Google Scholar 

  24. Molony DS, Callanan A, Kavanagh EG, Walsh MT, McGloughlin TM (2009) Fluid-structure interaction of a patient-specific abdominal aortic aneurysm treated with an endovascular stent-graft. Biomed Eng Online 8:24

    Article  PubMed Central  PubMed  Google Scholar 

  25. Mower WR, Quinones WJ, Gambhir SS (1997) Effect of intraluminal thrombus on abdominal aortic aneurysm wall stress. J Vasc Surg 26:602–608

    Article  CAS  PubMed  Google Scholar 

  26. Polzer S, Gasser TC, Markert B, Bursa J, Skacel P (2012) Impact of poroelasticity of intraluminal thrombus on wall stress of abdominal aortic aneurysms. Biomed Eng Online 11:62

    Article  PubMed Central  PubMed  Google Scholar 

  27. Raghavan ML, Vorp DA (2000) Toward a biomechanical tool to evaluate rupture potential of abdominal aortic aneurysm: identification of a finite strain constitutive model and evaluation of its applicability. J Biomech 33:475–482

    Article  CAS  PubMed  Google Scholar 

  28. Raut SS, Jana A, De Oliveira V, Muluk SC, Finol EA (2013) The importance of patient-specific regionally varying wall thickness in abdominal aortic aneurysm biomechanics. J Biomech Eng 135:81010

    Article  PubMed  Google Scholar 

  29. Schurink GW, van Baalen JM, Visser MJ, van Bockel JH (2000) Thrombus within an aortic aneurysm does not reduce pressure on the aneurysmal wall. J Vasc Surg 31:501–506

    Article  CAS  PubMed  Google Scholar 

  30. Sonesson B, Hansen F, Lanne T (1997) Abdominal aortic aneurysm: a general defect in the vasculature with focal manifestations in the abdominal aorta? J Vasc Surg 26:247–254

    Article  CAS  PubMed  Google Scholar 

  31. Speelman L, Schurink GW, Bosboom EM, Buth J, Breeuwer M, van de Vosse FN, Jacobs MH (2010) The mechanical role of thrombus on the growth rate of an abdominal aortic aneurysm. J Vasc Surg 51:19–26

    Article  PubMed  Google Scholar 

  32. Taubin G (1995) Curve and surface smoothing without shrinkage. In: IEEE Computer Society proceedings of the fifth international conference on computer vision (ICCV ‘95), p 852

  33. Thubrikar MJ, Robicsek F, Labrosse M, Chervenkoff V, Fowler BL (2003) Effect of thrombus on abdominal aortic aneurysm wall dilation and stress. J Cardiovasc Surg (Torino) 44:67–77

    CAS  Google Scholar 

  34. van’t Veer M, Buth J, Merkx M, Tonino P, van den Bosch H, Pijls N, van de Vosse F (2008) Biomechanical properties of abdominal aortic aneurysms assessed by simultaneously measured pressure and volume changes in humans. J Vasc Surg 48:1401–1407

    Article  Google Scholar 

  35. van Dam EA, Dams SD, Peters GW, Rutten MC, Schurink GW, Buth J, van de Vosse FN (2008) Non-linear viscoelastic behavior of abdominal aortic aneurysm thrombus. Biomech Model Mechanobiol 7:127–137

    Article  PubMed Central  PubMed  Google Scholar 

  36. Vavourakis V, Papaharilaou Y, Ekaterinaris JA (2011) Coupled fluid–structure interaction hemodynamics in a zero-pressure state corrected arterial geometry. J Biomech 44:2453–2460

    Article  CAS  PubMed  Google Scholar 

  37. Wang DH, Makaroun M, Webster MW, Vorp DA (2001) Mechanical properties and microstructure of intraluminal thrombus from abdominal aortic aneurysm. J Biomech Eng 123:536–539

    Article  CAS  PubMed  Google Scholar 

  38. Wang DH, Makaroun MS, Webster MW, Vorp DA (2002) Effect of intraluminal thrombus on wall stress in patient-specific models of abdominal aortic aneurysm. J Vasc Surg 36:598–604

    Article  PubMed  Google Scholar 

  39. Wilson JS, Virag L, Di Achille P, Karsaj I, Humphrey JD (2013) Biochemomechanics of intraluminal thrombus in abdominal aortic aneurysms. J Biomech Eng 135:021011

    Article  CAS  PubMed  Google Scholar 

  40. Wilson KA, Lee AJ, Lee AJ, Hoskins PR, Fowkes FG, Ruckley CV, Bradbury AW (2003) The relationship between aortic wall distensibility and rupture of infrarenal abdominal aortic aneurysm. J Vasc Surg 37:112–117

    Article  PubMed  Google Scholar 

  41. Xenos M, Alemu Y, Zamfir D, Einav S, Ricotta JJ, Labropoulos N, Tassiopoulos A, Bluestein D (2010) The effect of angulation in abdominal aortic aneurysms: fluid–structure interaction simulations of idealized geometries. Med Biol Eng Comput 48:1175–1190

    Article  PubMed  Google Scholar 

  42. Yushkevich PA, Piven J, Hazlett HC, Smith RG, Ho S, Gee JC, Gerig G (2006) User-guided 3d active contour segmentation of anatomical structures: significantly improved efficiency and reliability. Neuroimage 31:1116–1128

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The research project is financially supported by the Action “Supporting Postdoctoral Researchers”, co-financed by the European Social Fund (ESF) and the Greek State.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yannis Papaharilaou.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Metaxa, E., Kontopodis, N., Vavourakis, V. et al. The influence of intraluminal thrombus on noninvasive abdominal aortic aneurysm wall distensibility measurement. Med Biol Eng Comput 53, 299–308 (2015). https://doi.org/10.1007/s11517-014-1235-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11517-014-1235-x

Keywords

Navigation