Skip to main content

Advertisement

Log in

Numerical assessment of bone remodeling around conventionally and early loaded titanium and titanium–zirconium alloy dental implants

  • Original Article
  • Published:
Medical & Biological Engineering & Computing Aims and scope Submit manuscript

Abstract

The aim of this study was to investigate conventionally and early loaded titanium and titanium–zirconium alloy implants by three-dimensional finite element stress analysis. Three-dimensional model of a dental implant was created and a thread area was established as a region of interest in trabecular bone to study a localized part of the global model with a refined mesh. The peri-implant tissues around conventionally loaded (model 1) and early loaded (model 2) implants were implemented and were used to explore principal stresses, displacement values, and equivalent strains in the peri-implant region of titanium and titanium–zirconium implants under static load of 300 N with or without 30° inclination applied on top of the abutment surface. Under axial loading, principal stresses in both models were comparable for both implants and models. Under oblique loading, principal stresses around titanium–zirconium implants were slightly higher in both models. Comparable stress magnitudes were observed in both models. The displacement values and equivalent strain amplitudes around both implants and models were similar. Peri-implant bone around titanium and titanium–zirconium implants experiences similar stress magnitudes coupled with intraosseous implant displacement values under conventional loading and early loading simulations. Titanium–zirconium implants have biomechanical outcome comparable to conventional titanium implants under conventional loading and early loading.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Abrahamsson I, Berglundh T, Linder E et al (2004) Early bone formation adjacent to rough and turned endosseous implant surfaces. An experimental study in the dog. Clin Oral Implants Res 15:381–392

    Article  PubMed  Google Scholar 

  2. Akca K, Cavusoglu Y, Uysal S et al (2013) A prospective, open-ended, single-cohort clinical trial on early loaded Titanium–zirconia alloy implants in partially edentulous patients: up-to-24-month results. Int J Oral Maxillofac Implants 28:573–578

    Article  PubMed  Google Scholar 

  3. Akça K, Eser A, Canay S (2010) Numerical simulation of the effect of time-to-loading on peri-implant bone. Med Eng Phys 32:7–13

    Article  PubMed  Google Scholar 

  4. Albrektsson T, Brånemark P-I, Hasson HA et al (1981) Osseointegrated titanium implants. Requirements for ensuring a longlasting direct bone to implant anchorage in man. Acta Orthop Scand 52:155–170

    Article  CAS  PubMed  Google Scholar 

  5. Amor N, Geris L, Vander Sloten J et al (2009) Modelling the early phases of bone regeneration around an endosseous oral implant. Comput Methods Biomech Biomed Eng 12:459–468

    Article  CAS  Google Scholar 

  6. Barter S, Stone P, Brägger U (2012) A pilot study to evaluate the success and survival rate of titanium–zirconium implants in partially edentulous patients: results after 24 months of follow-up. Clin Oral Implants Res 23:873–881

    Article  PubMed  Google Scholar 

  7. Berglundh T, Abrahamsson I, Lang NP et al (2003) Denovo alveolar bone formation adjacent to endosseous implants. A model study in the dog. Clin Oral Impl Res 14:251–262

    Article  Google Scholar 

  8. Brånemark PI, Hansson BO, Adell R et al (1977) Osseointegrated implants in the treatment of the edentulous jaw. Experience from a 10-year period. Scand J Plast Reconstr Surg 16:1–132

    Google Scholar 

  9. Cehreli MC, Akkocaoglu M, Comert A et al (2007) Bone strains around apically free versus grafted implants in the posterior maxilla of human cadavers. Med Biol Eng Comput 45:395–402

    Article  PubMed  Google Scholar 

  10. Chiapasco M, Casentini P, Zaniboni M et al (2012) Titanium–zirconium alloy narrow-diameter implants (Straumann Roxolid®) for the rehabilitation of horizontally deficient edentulous ridges: prospective study on 18 consecutive patients. Clin Oral Implants Res 23:1136–1141

    Article  CAS  PubMed  Google Scholar 

  11. Dias DR, Leles CR, Lindh C et al (2014) The effect of marginal bone level changes on the stability of dental implants in a short-term evaluation. Clin Oral Implants Res. doi:10.1111/clr.12426

  12. Eser A, Tonuk E, Akca K et al (2010) Predicting time-dependent remodeling of bone around immediately loaded dental implants with different designs. Med Eng Phys 32:22–31

    Article  PubMed  Google Scholar 

  13. Eser A, Tönük E, Akça K et al (2013) Predicting bone remodeling around tissue- and bone-level dental implants used in reduced bone width. J Biomech 46:2250–2257

    Article  PubMed  Google Scholar 

  14. Gallucci GO, Benic GI, Eckert SE et al (2014) Consensus statements and clinical recommendations for implant loading protocols. Int J Oral Maxillofac Implants 29(suppl):287–290

    Article  PubMed  Google Scholar 

  15. Giesen EB, Ding M, Dalstra M et al (2003) Reduced mechanical load decreases the density, stiffness, and strength of cancellous bone of the mandibular condyle. Clin Biomech 18:358–363

    Article  CAS  Google Scholar 

  16. Gottlow J, Dard M, Kjellson F et al (2012) Evaluation of a new titanium–zirconium dental implant: a biomechanical and histological comparative study in the mini pig. Clin Implant Dent Relat Res 14:538–545

    Article  PubMed  Google Scholar 

  17. Hedia HS (2002) Stress and strain distribution behavior in the bone due to the effect of cancellous bone, dental implant material and the bone height. Biomed Mater Eng 12:111–119

    CAS  PubMed  Google Scholar 

  18. Ho W-F, Chen W-K, Wu S-C et al (2008) Structure, mechanical properties, and grindability of dental Ti–Zr alloys. J Mater Sci Mater Med 19:3179–3186

    Article  CAS  PubMed  Google Scholar 

  19. Huiskes R, Weinans H, Grootenboer HJ et al (1987) Adaptive bone-remodeling theory applied to prosthetic-design analysis. J Biomech 20:1135–1150

    Article  CAS  PubMed  Google Scholar 

  20. Jensen KS, Mosekilde A (1990) A model of vertebral trabecular bone architecture and its mechanical properties. Bone 11:417–423

    Article  CAS  PubMed  Google Scholar 

  21. Jones HH, Priest JD, Hayes WC et al (1977) Humeral hypertrophy in response to exercise. J Bone Jt Surg Am 59:204–208

    CAS  Google Scholar 

  22. Ladd AJC, Kinney JH, Haupt DL et al (1998) Finite element modeling of trabecular bone: comparison with mechanical testing and determination of tissue modulus. J Orthop Res 16:622–628

    Article  CAS  PubMed  Google Scholar 

  23. Merz BR, Hunenbart S, Belser UC (2000) Mechanics of the implant–abutment connection: an 8-degree taper compared to a butt joint connection. Int J Oral Maxillofac Implants 15:519–526

    CAS  PubMed  Google Scholar 

  24. Meyer U, Joos U, Mythili J et al (2004) Ultrastructural characterization of the implant/bone interface of immediately loaded dental implants. Biomaterials 25:1959–1967

    Article  CAS  PubMed  Google Scholar 

  25. Moreo P, García-Aznar JM, Doblaré M (2008) Bone ingrowth on the surface of endosseous implants. Part 1. Mathematical model. J Theor Biol 260:1–12

    Article  PubMed  Google Scholar 

  26. Rho JY, Tsui TY, Pharr GM (1997) Elastic properties of human cortical and trabecular bone measured by nanoindentation. Biomaterials 18:1325–1330

    Article  CAS  PubMed  Google Scholar 

  27. Rieger MR, Fareed K, Adams WK et al (1986) Bone stress distribution for three endosseous implants. J Prosthet Dent 61:223–228

    Article  Google Scholar 

  28. Riemer BA, Eadie JS, Wenzel TE, et al (1995) Microstructure and material property variations in compact and trabecular vertebral bone tissues. In: 41st Annual meeting of Orthopaedic Research Society, vol 2, p 529

  29. Steflik DE, McKinney RV Jr, Koth DL et al (1984) The biomaterial-tissue interface: a morphological study utilizing conventional and alternative ultrastructural modalities. Scanning Electron Microsc Pt 2:547–555

    Google Scholar 

  30. Stoppie N, Van Oosterwyck H, Jansen J et al (2009) The influence of Young’s modulus of loaded implants on bone remodeling: an experimental and numerical study in the goat knee. J Biomed Mater Res A 90:792–803

    Article  PubMed  Google Scholar 

  31. Szmukler-Moncler S, Salama H, Reingewirtz Y et al (1998) Timing of loading and effect of micromotion on bone–dental implant interface: review of experimental literature. J Biomed Mater Res 43:192–203

    Article  CAS  PubMed  Google Scholar 

  32. Thoma DS, Jones AA, Dard M et al (2011) Tissue integration of a new titanium–zirconium dental implant: a comparative histologic and radiographic study in the canine. J Periodontol 82:1453–1461

    Article  CAS  PubMed  Google Scholar 

  33. Ugural AC, Fenster SK (2003) Advanced strength and applied elasticity, 4th edn. Pearson Education – Prentice Hall, Englewood Cliffs, NJ, p 83

    Google Scholar 

  34. van Rietbergen B, Weinans H, Huiskes R (1997) Prospects of computer models for the prediction of osteoporotic bone fracture risk. In: Lowet G, Rüesgsegger P, Weinans H, Meuiner A (eds) Bone research in biomechanics. IOS Press, Netherlands, pp 25–32

    Google Scholar 

  35. Vandamme K, Naert I, Duyck J (2012) Animal experimental findings on the effect of mechanical load on peri-implant tissue differentiation and adaptation. In: Cehreli M (ed) Biomechanics of oral implants: handbook for researchers. Nova Science, New York, pp 97–127

    Google Scholar 

  36. Viceconti M, Davinelli M, Taddei F et al (2004) Automatic generation of accurate subject-specific bone finite element models to be used in clinical studies. J Biomech 37:1597–1605

    Article  PubMed  Google Scholar 

  37. Weber HP, Morton D, Gallucci GO et al (2009) Consensus statements and recommended clinical procedures regarding loading protocols. Int J Oral Maxillofac Implants 24(suppl):180–183

    PubMed  Google Scholar 

  38. Wintera W, Heckmann SM, Weber HP (2004) A time-dependent healing function for immediate loaded implants. J Biomech 37:1861–1867

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kıvanç Akça.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Akça, K., Eser, A., Çavuşoğlu, Y. et al. Numerical assessment of bone remodeling around conventionally and early loaded titanium and titanium–zirconium alloy dental implants. Med Biol Eng Comput 53, 453–462 (2015). https://doi.org/10.1007/s11517-015-1256-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11517-015-1256-0

Keywords

Navigation