Skip to main content
Log in

Isolated heart models: cardiovascular system studies and technological advances

  • Review Article
  • Published:
Medical & Biological Engineering & Computing Aims and scope Submit manuscript

Abstract

Isolated heart model is a relevant tool for cardiovascular system studies. It represents a highly reproducible model for studying broad spectrum of biochemical, physiological, morphological, and pharmaceutical parameters, including analysis of intrinsic heart mechanics, metabolism, and coronary vascular response. Results obtained in this model are under no influence of other organ systems, plasma concentration of hormones or ions and influence of autonomic nervous system. The review describes various isolated heart models, the modes of heart perfusion, and advantages and limitations of various experimental setups. It reports the improvements of perfusion setup according to Langendorff introduced by the authors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Araki Y, Usui A, Kawaguchi O, Saito S, Song MH, Akita T, Ueda Y (2005) Pressure–volume relationship in isolated working heart with crystalloid perfusate in swine and imaging the valve motion. Eur J Cardiothorac Surg 28:435–442

    Article  PubMed  Google Scholar 

  2. Belke DD, Larsen TS, Lopaschuk GD, Severson DL (1999) Glucose and fatty acid metabolism in the isolated working mouse heart. Am J Physiol 277:1210–1217

    Google Scholar 

  3. Bell RM, Mocanu MM, Yellon DM (2011) Retrograde heart perfusion: the Langendorff technique of isolated heart perfusion. J Mol Cell Cardiol 50:940–950

    Article  CAS  PubMed  Google Scholar 

  4. Boineau JP, Schuessler RB, Mooney CR, Miller CB, Wylds AC, Hudson RD, Brockus CW (1980) Natural and evoked atrial flutter due to circus movement in dogs: role of abnormal atrial pathways, slow conduction, nonuniform refractory period distribution and premature beats. Am J Cardiol 45:1167–1181

    Article  CAS  PubMed  Google Scholar 

  5. Chinchoy E, Soule CJ, Houlton AJ, Gallagher WJ, Hjelle MA, Laske TG, Morissette J, Iaizzo PA (2000) Isolated four-chamber working swine heart model. Ann Thorac Surg 70:1607–1614

    Article  CAS  PubMed  Google Scholar 

  6. Chou CC, Nihei M, Zhou S, Tan A, Kawase A, Macias ES, Chen PS (2005) Intracellular calcium dynamics and anisotropic reentry in isolated canine pulmonary veins and left atrium. Circulation 111:2889–2897

    Article  CAS  PubMed  Google Scholar 

  7. Churney L, Ohshima H (1964) An improved suction electrode for recording from the dog heart in situ. J Appl Physiol 19:793–798

    CAS  PubMed  Google Scholar 

  8. Cyon E (1866) Über den Einfluss der Temperaturänderungen auf Zahl, Dauer und Stärke der Herzschläge. Berichte über die Verhandlungen der Koniglich Sächsischen Gesellschaft der Wissenschaften zu Leipzig. Mathematisch-Physische Classe 18:256–306

    Google Scholar 

  9. De Lazzari C, Ferrari G, Mimmo R, Tosti G, Ambrosi D (1994) A desk top computer model of the circulatory system for heart assistance simulation: effect of an LVAD on energetic relationships inside the left ventricle. Med Eng Phys 16:97–103

    Article  PubMed  Google Scholar 

  10. Dillon SM, Kerner TE, Hoffman J, Menz V, Li KS, Michele JJA (1998) A system for in vivo cardiac optical mapping. IEEE Eng Med Biol Mag 17:95–108

    Article  CAS  PubMed  Google Scholar 

  11. Doring HJ, Dehnert H (1987) The isolated perfused heart according to Langendorff. BVM Biomesstechnic, Achern

  12. Efimov IR, Nikolski VP, Salama G (2004) Optical imaging of the heart. Circ Res 95:21–33

    Article  CAS  PubMed  Google Scholar 

  13. Egorova MV, Afanas’ Ev SA, Popov SV (2005) A simple method for isolation of cardiomyocytes from adult rat heart. Bull Exp Biol Med 140:370–373

    Article  CAS  PubMed  Google Scholar 

  14. Fast VG (2005) Recording action potentials using voltage-sensitive dyes. In: Practical methods in cardiovascular research. Springer, New York, pp 233–255

  15. Ferrari G, De Lazzari C, Mimmo R, Tosti G, Ambrosi D (1991) A modular numerical model of the cardiovascular system for studying and training in the field of cardiovascular physiopathology. J Biomed Eng 14:91–107

    Article  Google Scholar 

  16. Fischer-Rasokat U, Beyersdorf F, Doenst T (2003) Insulin addition after ischemia improves recovery of function equal to ischemic preconditioning in rat heart. Basic Res Cardiol 98:329–336

    Article  CAS  PubMed  Google Scholar 

  17. Ganote CE, Worstell J, Iannotti JP, Kaltenbach JP (1977) Cellular swelling and irreversible myocardial injury. Effects of polyethylene glycol and mannitol in perfused rat hearts. Am J Pathol 88:95–118

    PubMed Central  CAS  PubMed  Google Scholar 

  18. Gee KR, Brown KA, Chen WNU, Bishop-Steward J, Gray D, Johnson I (1999) Chemical and physiological characterization of fluo-4 Ca2+-indicator dyes. Cell Calcium 27:97–106

    Article  Google Scholar 

  19. Grieve DJ, Cave AC, Byrne JA, Layland J, Shah AM (2004) Analysis of ex vivo left ventricular pressure–volume relations in the isolated murine ejecting heart. Exp Physiol 89:573–582

    Article  PubMed  Google Scholar 

  20. Grupp IL, Subramaniam ARUN, Hewett TE, Robbins JEFFRY, Grupp GUNTER (1993) Comparison of normal, hypodynamic, and hyperdynamic mouse hearts using isolated work-performing heart preparations. Am J Physiol 265:1401–1410

    Google Scholar 

  21. Gurev V, Constantino J, Rice JJ, Trayanova NA (2010) Distribution of electromechanical delay in the heart: insights from a three-dimensional electromechanical model. Biophys J 99:745–754

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  22. Hearse DJ, Sutherland FJ (2000) Experimental models for the study of cardiovascular function and disease. Pharmacol Res 41:597–603

    Article  CAS  PubMed  Google Scholar 

  23. Holcomb MR, Woods MC, Uzelac I, Wikswo JP, Gillian JM, Sidorov VY (2009) The potential of dual camera systems for multimodal imaging of cardiac electrophysiology and metabolism. Exp Biol Med 234:1355–1373

    Article  CAS  Google Scholar 

  24. How OJ, Aasum E, Kunnathu S, Severson DL, Myhre ES, Larsen TS (2005) Influence of substrate supply on cardiac efficiency, as measured by pressure–volume analysis in ex vivo mouse hearts. Am J Physiol 288:2979–2985

    Google Scholar 

  25. Janoušek O, Kolářová J, Nováková M, Provazník I (2010) Three-dimensional electrogram in spherical coordinates: application to Ischemia analysis. Physiol Res 59:51–58

    Google Scholar 

  26. Johnson PL, Smith W, Baynham TC, Knisley SB (1999) Errors caused by combination of di-4-ANEPPS and fluo 3/4 for simultaneous measurements of transmembrane potentials and intracellular calcium. Ann Biomed Eng 27:563–571

    Article  CAS  PubMed  Google Scholar 

  27. Kioka Y, Tago M, Bando K, Seno S, Shinozaki Y, Murakami T, Teramoto S (1985) Twenty-four-hour isolated heart preservation by perfusion method with oxygenated solution containing perfluorochemicals and albumin. J Heart Transplant 5:437–443

    Google Scholar 

  28. Knisley SB, JUustice RK, Kong W, Johnson PL (2000) Ratiometry of transmembrane voltage-sensitive fluorescent dye emission in hearts. Am J Physiol Heart Circ Physiol 279:1421–1433

    Google Scholar 

  29. Kolarova J, Fialova K, Janousek O, Novakova M, Provaznik I (2010) Experimental methods for simultaneous measurement of action potentials and electrograms in isolated heart. Physiol Res 59:71–80

    Google Scholar 

  30. Langendorff O (1895) Untersuchungen am überlebenden Säugethierherzen. Pflügers Arch 61:291–332

    Article  Google Scholar 

  31. Loew LM, Coehen LB, Dix J, Fluhler EN, Montana V, Salama G, Wu JY (1992) A naphthyl analog of the aminostyryl pyridinium class of potentiometric membrane dyes shows consistent sensitivity in a variety of tissue, cell, and model membrane preparations. J Membr Biol 130:1–10

    Article  CAS  PubMed  Google Scholar 

  32. Louch WE, Sheehan KA, Wolska BM (2011) Methods in cardiomyocyte isolation, culture, and gene transfer. J Mol Cell Cardiol 51:288–298

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  33. Marian AJ (2005) On mice, rabbits, and human heart failure. Circulation 111:2276–2279

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  34. Martin HN (1883) The direct influence of gradual variations of temperature upon the rate of beat of the dog’s heart. Phil Trans 174:663–688

    Article  Google Scholar 

  35. Mouren S, Vicaut E, Lamhaut L, Riou B, Ouattara A (2010) Crystalloid versus red blood cell-containing medium in the Langendorff-perfused isolated heart preparation. Eur J Anaesthesiol 27:780–787

    Article  PubMed  Google Scholar 

  36. Neely JR, Liebermeister H, Battersby EJ, Morgan HE (1967) Effect of pressure development on oxygen consumption by isolated rat heart. Am J Physiol 212:804–814

    CAS  PubMed  Google Scholar 

  37. Novakova M, Moudr J, Braveny P (2000) A modified perfusion system for pharmacological studies in isolated hearts. Analysis of biomedical signals and images. 15th Biennial international eurasip conference biosignal. pp 162–164

  38. Pacher P, Nagayama T, Mukhopadhyay P, Bátkai S, Kass DA (2008) Measurement of cardiac function using pressure–volume conductance catheter technique in mice and rats. Nat Protoc 3:1422–1434

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  39. Paigen KA (1995) A miracle enough: the power of mice. Nat Med 1:215–220

    Article  CAS  PubMed  Google Scholar 

  40. Paquin J, Aouffen M, De Grandpre E, Nadeau R, Langlois D, Mateescu MA (2005) Neuroprotective and cardioprotective actions of an association of pyruvate, vitamin E and fatty acids. Arzneimittel Forschung 55:359–369

    CAS  PubMed  Google Scholar 

  41. Pasini E, Solfrini R, Bachetti T, Marino M, Bernocchi P, Visioli F (1999) The blood perfused isolated heart: characterization of the model. Basic Res Cardiol 94:215–222

    Article  CAS  PubMed  Google Scholar 

  42. Piuhola J, Szokodi I, Kinnunen P, Ilves M, Vuolteenaho O, Ruskoaho H (2003) Endothelin-1 contributes to the Frank-Starling response in hypertrophic rat hearts. Hypertension 41:93–98

    Article  CAS  PubMed  Google Scholar 

  43. Prendergast BD, Sagach VF, Shah AM (1997) Basal release of nitric oxide augments the Frank-Starling response in the isolated heart. Circulation 96:1320–1329

    Article  CAS  PubMed  Google Scholar 

  44. Provaznik I, Novakova M, Vesely Z, Blaha M, Chmelar M (2003) Electro-optical recording system for myocardial ischemia studies in animal experiments. Comput Cardiol 30:573–576

    Google Scholar 

  45. Riva E, Hearse DJ (1991) Isolated, perfused neonatal rat heart preparation for studies of calcium and functional stability. Ann Thorac Surg 52:987–992

    Article  CAS  PubMed  Google Scholar 

  46. Ronzhina M, Cmiel V, Janoueek O, Kolarova J, Novakova M, Babula P, Provaznik I (2013) Application of the optical method in experimental cardiology: action potential and intracellular calcium concentration measurement. Physiol Res 62:125–137

    CAS  PubMed  Google Scholar 

  47. Salama G (2001) Optical mapping: background and historical perspective. Optical mapping of cardiac excitation and arrhythmias. Futura Publishing Company, New York, 9–33

  48. Sermesant M, Delingette H, Ayache N (2006) An electromechanical model of the heart for image analysis and simulation. IEEE Trans Med Imaging 25:612–625

    Article  CAS  PubMed  Google Scholar 

  49. Silei V, Fabrizi C, Venturini G, Tagliavini F, Salmona M, Bugiani O, Lauro GM (2000) Measurement of intracellular calcium levels by the fluorescent Ca2+ indicator calcium green. Brain Res Protoc 5:132–134

    Article  CAS  Google Scholar 

  50. Skrzypiec-Spring M, Grotthus B, Szeląg A, Schulz R (2007) Isolated heart perfusion according to Langendorff—still viable in the new millennium. J Pharmacol Toxicol Methods 55:113–126

    Article  CAS  PubMed  Google Scholar 

  51. Stenslokken KO, Rutkovskiy A, Kaljusto ML, Hafstad AD, Larsen TS, Vaage J (2009) Inadvertent phosphorylation of survival kinases in isolated perfused hearts: a word of caution. Basic Res Cardiol 104:412–423

    Article  CAS  PubMed  Google Scholar 

  52. Sutherland FJ, Hearse DJ (2000) The isolated blood and perfusion fluid perfused heart. Pharmacol Res 41:613–627

    Article  CAS  PubMed  Google Scholar 

  53. Sutherland FJ, Shattock MJ, Baker KE, Hearse DJ (2003) Mouse isolated perfused heart: characteristics and cautions. Clin Exp Pharmacol Physiol 30:867–878

    Article  CAS  PubMed  Google Scholar 

  54. Svrcek M, Retherford S, Chen AYH, Provaznik I, Smaill BH (2009) Using image registration to reconstruct spatiotemporal electrical activity in cardiac optical mapping studies. Comput Cardiol 36:521–524

    Google Scholar 

  55. Takahashi A, Camacho P, Lechleiter JD, Herman B (1999) Measurement of intracellular calcium. Physiol Rev 79:1089–1125

    CAS  PubMed  Google Scholar 

  56. Taylor PB, Cerny FJ (1976) Evaluation of the isolated paced rat heart. J Appl Physiol 41:328–331

    CAS  PubMed  Google Scholar 

  57. Uematsu T, Vozeh S, Ha HR, Follath F, Nakashima M (1987) Method for stable measurement of the electrocardiogram in isolated guinea pig heart. J Pharmacol Methods 18:179–185

    Article  CAS  PubMed  Google Scholar 

  58. Valentin JP, Hoffmann P, de Clerck F, Hammond TG, Hondeghem L (2004) Review of the predictive value of the Langendorff heart model (Screenit system) in assessing the proarrhythmic potential of drugs. J Pharmacol Toxicol Methods 49:171–181

    Article  CAS  PubMed  Google Scholar 

  59. Walters HL III, Digerness SB, Naftel DC, Waggoner JR III, Blackstone EH, Kirklin JW (1992) The response to ischemia in blood perfused vs. crystalloid perfused isolated rat heart preparations. J Mol Cell Cardiol 24:1063–1077

    Article  PubMed  Google Scholar 

  60. Wang HT, Li ZL, Fan BY, Su FF, Zhao JB, Ren J, Zheng QS (2013) The independent role of the aortic root ganglionated plexi in the initiation of atrial fibrillation: an experimental study. J Thorac Cardiovasc Surg 148:73–76

    Article  PubMed  Google Scholar 

  61. Wang L, Myles RC, De Jesus NM, Ohlendorf AK, Bers DM, Ripplinger CM (2014) Optical mapping of sarcoplasmic reticulum Ca2+ in the intact heart ryanodine receptor refractoriness during alternans and fibrillation. Circ Res 114:1410–1421

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  62. Zimmer HG (1998) The isolated perfused heart and its pioneers. News Physiol Sci 13:203–210

    PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by Grant Projects GAP102/12/2034 and by the European Regional Development Fund—Project FNUSA-ICRC No. CZ.1.05/1.1.00/02.0123.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marie Novakova.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Olejnickova, V., Novakova, M. & Provaznik, I. Isolated heart models: cardiovascular system studies and technological advances. Med Biol Eng Comput 53, 669–678 (2015). https://doi.org/10.1007/s11517-015-1270-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11517-015-1270-2

Keywords

Navigation