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Abstract Diagnostic test accuracy, based on sensitivity, specificity, positive/nega-
tive predictive values (dichotomous case), and on ROC analysis (continuous case),
should be expressed with a single, coherent index. We propose to modelize the
diagnostic test as a flow of information between the disease, that is a hidden state
of the patient, and the physicians. We assume that: i) sensitivity, specificity, false
positive/negative rates are the probabilities of a Binary Asymmetric Channel; ii)
the diagnostic channel information is measured by Mutual Information. We intro-
duce two summary measures of accuracy, namely the Information Ratio (IR) for
the dichotomous case, and the Global Information Ratio (GIR) for the continuous
case. We apply our model to a study by Pisano et al. [19], who compared digital
versus film mammography, in diagnosing breast cancer in a screening population
of 42,760 women. In film mammography, the maximum IR (0.178) corresponds to
the standard cut-off of sensitivity and specificity provided by the ROC analysis
(GIR 0.200). Maximum IR and GIR for digital mammography are higher (0.201
and 0.229, respectively), but IR corresponds to a cut-off with higher sensitivity
but lower specificity, thus suggesting that larger information provided by digital
mammography carries the risk of more false positive cases.
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1 Introduction

Standard analysis of accuracy, for a dichotomous diagnostic test, is currently based
on the calculation of sensitivity (SE), specificity (SP), positive predictive value
(PPV) and negative predictive value (NPV), as well as SE and SP-derived mea-
sures, such as likelihood ratios [10], [24]. Even though there may be preference
for either specificity or sensitivity (in which case a single measure would hide the
required detailed information about different aspects of accuracy), nevertheless a
single statistical measure that can summarize the global quality of a dichotomous
diagnostic test is of interest in many clinical situations, and is still lacking [18]. In
the case of continuous test results, standard analysis includes Receiver Operating
Characteristic (ROC) curves analysis as the most popular method to assess a test
or to compare it with a different one [4], [8], [15], [16]. Different summary measures
have been proposed to describe the accuracy with a single, objective index, e.g.
the Area Under the Curve (AUC) provided by ROC analysis, and each of them
shows well known advantages and drawbacks [3], [24]. Another important problem
is which decision cut-off should be used to classify continuous test results, and how
will the choice of a decision threshold affect comparisons between two diagnostic
tests or between two raters [15]. Even these are critical questions when computing
sensitivity and specificity, yet the choice for the decision threshold is often arbi-
trary [15].

Regardless of the method chosen for the summary measure or for the cut-off, stan-
dard analysis is based on the comparison between a Standard of Reference (SR)
and test results, that is on probabilities that a test result really represents the
presence or absence of a certain medical condition. Even assuming that SR always
provides a correct representation of the patient status, which is not the case [24],
standard analysis does not rigorously objectify which is the maximum information
on the disease we can achieve depending on that specific test. One might argue
this is a potential limitation, since it might be difficult to understand: i) whether
a disappointing test performance has been conditioned by definite characteristics
of a clinical setting (low prevalence, selection bias and so on) or rather by intrinsic
limits on the amount of diagnostic information the test can “physically” vehicle; i)
whether, for a certain clinical scenario, it could be convenient to improve further
an already good test performance, or not. Furthermore, one might expect that
quantifying information underlying test results might complement the standard
dichotomous or ROC analysis.

To our knowledge, no definite methods to measure test accuracy in informational
terms are currently available. We hypothesize that Information Theory [21] is the
proper framework to define such a method, since it is the mathematical apparatus
underlying current telecommunication systems, based on a rigorous, quantifiable
notion of information and information-derived measures [23]. As detailed below,
we show that a diagnostic test can be modeled using Information Theory, and
consequently that diagnostic test accuracy can be expressed coherently, with a
single index, in the form of a summary information measure; it can be used also
to select the best cut-off in the continuous case.

On this basis, the aim of this paper is manyfold: ¢) to present the above model
of Shannon informational analysis of diagnostic accuracy; i) to illustrate how in-
formational analysis can be considered as a useful complement to standard ROC
analysis, #4i) to show that informational analysis is able to overtake some weakness
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of the ROC/AUC approach, and iv) to illustrate the applicability of the informa-
tional model using a dataset from medical literature.

2 Methods
2.1 Basic definitions

In the following, we shall use the 2 - 2 table with the four possible outcomes
deriving from the application of a standard of reference to the diagnostic test set;
they are, respectively, the number of true positives (TP), false positives (FP), false
negatives (FN) and true negatives (TN) reports. If we call reader the clinician who
formulates the diagnostic report R, we assume that there are only two mutually
exclusive states D of disease (or pathologic state) for a patient: it can be present
(D=1) or absent (D=0) (see [25]). Similarly, a report indicating the presence of
the disease is called positive (R = 1); when indicating its absence is called negative
(R=0); this corresponds to a dichotomous or binary classifier. Once we have TP,
FN, FP and TN, we can specify the following quantities:

Sensitivity SE=p(R=1/D=1) = TPZiPFN (1)
False negative rate FNR=p(R=0/D=1)= __FN (2)
TP+ FN
Specificity SP=p(R=0/D=0)= i (3)
FP+TN
s FP
False positive rate FPR=p(R=1/D=0) = FPTTN (4)

where p(R=1z/D =1y) is the conditional probability that the report R is z, given
that the disease is y. From equations (1) and (2) we note that p(R = 1/D =
1)+ p(R =0/D = 1) = 1, since once the disease is present, we necessarily have
R =1or R =0 as a possible diagnosis. The same happens for equations (3) and
(4), that isp(R=1/D=0)+p(R=0/D =0) = 1.

So, if we set FNR = o« and FPR = (3, we have SE =1 —«a and SP =1 — (.
We assume that the disease is a hidden, objective status of the patient, which
can be present (D = 1) or absent (D = 0). The physician makes assumptions on
the disease by interpreting the result of a diagnostic test, that can be thought
of as the outcome of the diagnostic channel of figure 1; it might represent, e.g.,
a mammography examination interpreted by a radiologist, or a Prostate Specific
Antigen (PSA) level, telling the urologist whether the cut-off of 10 ng/ml has been
exceeded. Since test results give the reader information on the disease, then the
accurate diagnostic test (or the accurate reader) will be the one able to extract as
much information as possible from the diagnostic channel: the more information on
the patient status flows from the disease to the reader on the diagnostic channel,
the more accurate the diagnostic test. This means that a coherent measure of
the diagnostic test quality is the (maximum) amount of information that can
be extracted from the diagnostic channel. We shall describe in details how it is
possible to measure precisely such a quantity.

If the diagnostic channel were perfect (standard of reference), we should have
FNR=FPR =0, SE=SP =1, that is « = 0 and 8 = 0, and the test always
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gives us the correct (positive or negative) diagnosis. But some ”noise“ can affect
the results, due to the limits of our diagnostic methods and/or to the inexperience
of the reader; this means that « and (8 are usually strictly greater than zero. The
consequence is that we have negative test results in presence of the disease (F'N)
and positive test results in absence of the disease (F'P).

2.2 Modeling dichotomous diagnostic tests

The model above described has already been fully investigated and completely
solved by Claude Elwood Shannon in 1948; his milestone paper ” A mathematical
theory of communication” [21] established the born of a new scientific discipline,
the Information Theory. All modern digital communication systems that interact
over a network (telephones, computers, televisions, mobiles, and so on) are based
(also) on this theory and on the work of Shannon.

In the original study the (binary) channel is constituted by a (wired) line of trans-
mission affected by noise, for example a twisted pair, a coaxial cable or other. The
effect of noise is that of changing the bit flowing on the channel with a probability
that depends on its physical quality. Suppose that D and R describe the (binary)
variables at the input and at the output of the channel (see figure 1); if we send,
for example, D = 0 on the channel, there is a positive probability p(1/0) = g
to receive R = 1 on the output. The same happens if we send D = 1, since we
have a positive probability p(0/1) = « to receive R = 0. On the contrary, if the
channel works well we send D = 1 and receive R = 1, but this occurs only with a
probability p(1/1) = 1 — «; the same happens if we send D = 0 and receive R =0
(with probability p(0/0) = 1 — 3). So, the behavior of this Binary Asymmetric
Channel (BAC) is described by the (stochastic) transition matriz I" *

l-a «
r- ( PR ﬁ) (5)
In our setting, we have nothing to do than using Shannon Information Theory to
evaluate the (maximum) quantity of information flowing through the diagnostic
channel of figure 1; this will correspond to the accuracy of the diagnostic test.
Shannon precisely defined, in mathematical terms, this flow of information; he
introduced the concept of Mutual Information [21], and we are going to use it to
measure the quality of the diagnostic test [13].
Now we have clear the terms of the problem; we have assigned:

— D =R ={0,1}, that are the two binary sets of the outcomes of disease and
test results;

— a (binary) probability distribution Pp = {pp(0),pp(1)} for the disease D,
where

pp(0) = Pr{D = 0} = Pr{disease is absent}
pp(1) = Pr{D = 1} = Pr{disease is present}, or pre-test probability of disease
or prevalence;

1 In the special case of communication channels the matrix is usually symmetric (o = ),
since the system has a symmetric behavior with respect to 0 or 1.
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— a (binary) probability distribution Pr = {pr(0),pr(1)} for the test result R,
where

pr(0) = Pr{R = 0} = Pr {test result is negative}
pr(1l) = Pr{R = 1} = Pr {test result is positive}

The bond between D and R is fixed by the transition matrix (5) of the diagnostic
channel of figure 1, and the flow of information between D and R is measured by
the Mutual Information (MI)(see [21], [5]); it is defined as

I(D,R) = p(d,r)log pldr) (6)
%Dz p(d)p(r)

where p(d,r) = Pr{D=d,R=r} (d € D, r € R) are the joint probabilities,
p(d) = Pr{D = d} and p(r) = Pr{R = r} are the marginals, and the logarithm is
taken to the base 2. By taking into account of the Bayes rule p(d, r) = p(d)p(r/d),
and that p(r) = ), p(d, 1) = Y4 p(d)p(r/d) as its consequence, we have

B . . p(r/d) _ , o p(r/d)
10.R) = 3 plaitr/ ) log T 7L = 3 atdiptr/aytos =20 ()

deD daeD
reR reR

When decoded in terms of SE, FNR , FPR and SP we have
SE FNR
I(D,R) = PREV - SE~logﬁ + PREV - FNR - log NE +

FPR SP
+ (1 —PREV)-FPR-log PR +(1—PREV)-SP~logN—R (8)

where PREYV is the prevalence, while PR and NR are, respectively, the proba-
bility of a positive and of a negative test result. This means that the quantity of
information the reader can extract from the diagnostic channel depends on two
factors:

— the terms p(r/d) (SE , FNR , FPR and SP), that are the components of
the transition matrix I" (5); they are related to the quality of the diagnostic
channel;

— the pre-test probability distribution Pp of the disease (PREV).

This implies that we can fix a certain Pp and compare different diagnostic tests,
or we can search for the Pp which maximizes I(D, R) for a single diagnostic test.
In the Shannon model I(D,R) is a measure of the amount of information ex-
changed between the two random variables D and R [5]; it is greater than or equal
to 0, and it is a measure of the pseudo-distance?® between two probability distribu-
tions, that are the joint probability distribution P(D, R), and the product of the
marginals P(D)- P(R). When P(D, R) = P(D)- P(R), then p(d,r) = p(d)p(r) for

2 From the mathematical point of view, I(D, R) is not a distance, because the symmetry
and the triangle inequality are not satisfied.
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all d and r, all the ratios in equation (6) are equal to 1, and all the logarithms are
equal to zero; when this happens we have I(D, R) = 0, which means that D and
R are independent each other; in this case there is no flow of information between
the two variables. On the contrary, if p(d,r) # p(d)p(r) we have I(D,R) > 0,
and this value is a measure of the distance from the condition of independence.
The greater I(D, R), the more tied are the two variables, the more information is
exchanged between them (see [5] for the mathematical details).

The maximum of Mutual Information is the Capacity of the channel [21]

C = max I(D, ) = max{H(D) ~ H(D/R)] = max[H(R) ~ H(R/D)]  (9)

where

K
H(X) == plx:) logp(ws) (10)

1=1

is the Shannon Entropy [21], and
H(X/Y) ==Y plxy)logp(/y) =Y py)H(X/Y =y) (11)

is the conditional Entropy, for two random variables X and Y [21]. The capacity
corresponds to the maximum amount of information that can flow on the diag-
nostic channel, when varying the prevalence. This is the best performance the
diagnostic test can achieve. Under this framework, comparing the quality of two
(or more) diagnostic tests means comparing the capacities of the corresponding
diagnostic channels.

We stress on the fact that the Shannon measure of information based on entropy
(10) is not only one of the possible approaches to measure information, but it is
the only one; as a matter of fact there exists a theorem, proved by Khinchin in
1956 [12], which shows that the Shannon entropy based on the logarithm is the
only measure of information which satisfies some basic and reasonable postulates
necessary to coherently define an information measure [1]. In this setting an event
with probability p carries an amount of information equal to — log p; note that a
sure event, for which p = 1, carries no information, while a very unlikely event,
with p tending to 0, carries a quantity of information that approaches infinity.
To evaluate the best performance of a diagnostic test, we have to maximize the
MI (6) for the binary asymmetric diagnostic channel of figure 1, over all possible
prevalences; this leads to the maximum amount of information that a diagnostic
test can provide, that is to the capacity of the channel. After some mathematical
manipulation (see [2]), MI can be expressed as

I(D, R) = h(u) + (h(a) = h(83))pp(0) — h() (12)
where h(.) is the binary Shannon entropy function defined as
h(p) = —plogy p — (1 — p)log, (1 — p) (13)

and u=a+pp(0)(1—a—pF) (0<u<1, a+B<1). Note that I(D, R) is in the range

0...1. From [14] we have
-«
Cpac =77 hla) - 1 —a—

1—a—3 - h(B) + logy (1+2) (14)

g
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where
h(B)—h(a)

2 =2 1-a-8 (15)

The prevalence p}, (1) that achieves this capacity is given by

1-p3)(1+2)—1
(1-a—=pB)(1+=2)

In figure 2a we can see the behavior of capacity as a function of SE =1 — a and
B =1— SP, while in figure 2b we see the corresponding prevalence pp, (1) that
achieves capacity. Note that the capacity is high also when « and 3 tend to 1,
that is SE and SP tend to 0; this is not surprising, since the complement of a
systematically incorrect test result is systematically correct.

As matter stands, we could compare the quality of different diagnostic tests
by comparing the values of the associated capacities (14); note, however, that this
approach is insidious, since we are not able to control the prevalence, that is to
set it to the value pp(1); as a matter of fact this value is in the range 0,4...0,6
for the vast majority of @ and 3 (see figure 2b). Note, further, that the concept of
”pre-test probability of disease” is ambiguous in this context, since a diagnostic
test is usually administered to people who are suspected to have a specific disease,
and not to a sample of population. This means that the effective probability that is
supplying the diagnostic channel, is something similar to Pr{disease/knowing the
patient is suspected to have a disease}, which is practically impossible to evaluate.
All these problems can be avoided by assessing the accuracy of the diagnostic
test in terms of the area under curve (AUC) subtended by the MI-Curve, that
is the plot of MI variation over pp(1) changes. Calculating the AUC corresponds
to evaluate the diagnostic test globally, over all possible pre-test probabilities of
disease. This approach requires to evaluate the definite integral of function (12).
If we set pp(0) =2 =1—pp(1) and MI = I(D, R) for sake of simplicity, we need
to calculate

pp(l) = (16)

1
0

1
/O MIdx = / (h(u) 4+ (h(a) — h(B))z — h(a)) dx (17)

whereu = a+z(l—a—0) (0 <u <1, a+ 8 < 1). This integral can be evaluated
by parts; here is the final value

/ " MIds— ! {(_@2 log(8) + (1)~ (1—5)* log(1—5)
0

a—@3 log 4

_ (a— 1)%log(1 — @) + a — a? log(a) } _ h(a) + R(B)
log 4 2

(18)

where the log are now to the natural base e.
Note that the MI-Curve area of the standard of reference can be computed by
substituting @ = = 0 in the formula (18); this leads to

1
/Mfdx
0

Figure 3 shows the MI-Curve of the standard of reference (SR), for which SE =
SP =1, and the MI-Curves of two hypothetical diagnostic tests with SE = SP =

=0.721 1
Iog1 — 07218 (19)

a=p6=0
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0.99 (A) and SE = 0.80, SP = 0.90 (B), respectively. Moreover, we show the MI-
Curve of the diagnostic test for which SE = SP = 0.5 (C’+’), which gives random
results; the curve is compressed to zero, and lies on the segment 0...1. Since the
AUC subtended by the standard of reference is associated to the best possible
performance, we can relate to it the AUC of the MI-Curve we want to evaluate, so
as to obtain a real number in the interval 0...1. We call it the Information Ratio
(IR) of the diagnostic test.

1
IR = log 4 / MIdz (20)
0

In the examples of figure 3, the IRs of the diagnostic tests are respectively 0.91
(A), 0.38 (B) and 0 (C). Note that the IR is very sensitive to small variation of «
and ; e.g., the transition from a=,=0.01 to «=/3=0.02 leads to a change of
IR from 0.907 to 0.841. It is obvious that we can restrict the integral limits in the
case we have assigned a specific interval for prevalence.

If we compare IR and standard accuracy® for different values of a (= 3) in the
range 0...0.5, we can note that the random diagnostic test with a = 0.5 has
IR = 0, since the situation is equivalent to a random choice of the diagnosis,
and no information flows on the diagnostic channel*; on the contrary, standard
accuracy has a residual value of 50%, that is completely misleading.

2.3 Modeling multi-value diagnostic tests with variable threshold

The above model can be easily applied to the case of diagnostic tests expressing
the results on an interval or rank scale, for which ROC analysis is commonly used
to handle different thresholds of 3=1 — SP [15]; in this case we can obtain a IR
value for each 8. This leads to three main consequences. First, it is possible to find
the optimal threshold that leads to the maximum IR for the specified test. Second,
we can draw the iso-informational IR curves on the ROC plane 1 — SP/SE (see
figure 4), that can be used to directly quantify the IR associated to each point of
the ROC curve. Third, we can build an Information Ratio Curve (IRC) by plotting
these IR values vs (.

The AUC of the IRC can be related with the AUC of the Limit Information Curve
(LIC), drawn by fixing SE=1 (a=0) for all values of 3, which corresponds to the
curve associated with the maximum amount of information we can gain for each
value of SP. We call this ratio the Global Information Ratio (GIR) of that test.
To build the Limit Information Curve we need to set a = 0 in equation (20); this
leads to

! A2
IR(f) :Ologzi/o MI dz = (1 _52 log(8) + 1—(1—8) log(1—8) — log 4 hiég))
21

3 Standard accuracy sums up the fraction of good reports with respect to the total number
of reports. It corresponds to the probability of a correct (positive or negative) diagnosis, that
is (TP+TN)/(TP+ FP+TN + FN).

4 In the Shannon context this is a special case of the so called useless channel, characterized
by the relation =1 — «, that leads to a transition matrix with two identical rows.
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that represents the LIC as a function of 3. In figure 5 we can see the behavior of
the LIC, together with the IRC curve derived from a hypothetical simulated test.
The GIR is the ratio between the AUC of the IRC and the AUC subtended by the
LIC; to obtain the last one we need to integrate the function (21) on 3

1
AUCLic :/ IR(B)| = dB =
0

1/ 22
:/ (1 _ﬁ)g log(8)+1—(1—3) log(1— ) —log 4 hzéﬁ)dﬂz
0
1
= Lio(1 - 8)+ 20 — Blog :2—%220.35506 (22)
0

where Lia(z) = Y7 | 2% /k? is the Polylogarithm function. So, we have

AUCrrc

IR =
GIR 0.35506

(23)

which represents the summary measure of diagnostic performance of the variable-
threshold test in terms of informational analysis.

Even if high values of GIR are usually associated with high values of maximum
IR (and vice-versa), it is not difficult to show cases where two identical values of
maximum IR leads to one GIR significantly greater than the other. So IR and GIR
need to be analyzed separately.

2.4 Application to a real scenario

We exemplify our model by using data from the study by Pisano et al. [19], who
compared Digital Mammography (DM) versus Film Mammography (FM) in diag-
nosing breast cancer in a screening population of 42,760 women recruited over
33 referral centers. The standard of reference was represented by a breast biopsy
performed within 15 months after the study entry, or a follow-up mammogram
obtained at last 10 months after the study entry. The accuracy of FM and DM
was assessed by performing ROC analysis on the entire study cohort and several
subgroups (including age, breast density and menopausal status), using a 7-points
malignancy scale (1 = definitely not malignant; 2 = almost definitely not malig-
nant; 3 = probably not malignant; 4 = possibly malignant; 5 = probably malig-
nant; 6 = almost definitely malignant; 7 = definitely malignant); in the analyses,
scores of 4, 5, 6, and 7 were defined as positive, while scores of 1, 2, and 3 were de-
fined as negative. After extracting data from the Table 3 of paper [19], we applied
our model and recalculated unfitted, empirical operating points of the ROC curve
using the same 7-points malignancy scale on the entire study cohort after 455 days
of follow-up. We refer to the “main threshold” of 1 — SP/SFE at ROC analysis as
the ones determined with the decision rule explained in the original article, which
corresponds to a threshold in column 4. Analysis was performed using a dedicated
software, developed in GNU Octave, and freely available on request.
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3 Results

The table 1 shows 1 — SP and SFE of film and digital mammography calculated
using TP, FN, TN and FP extracted from our reference work [19], for each cut-off
point. Maximum IR for film mammography is found in the point corresponding
to the main threshold used in original ROC analysis (column 4). On the contrary,
maximum IR for digital mammography corresponds to a higher cut-off compared
to that used with ROC analysis (column 3), with an increase in SE (49 cancers) and
in FPs (2175 cases). Figures 6a and 6b show the IRC curves and the corresponding
LIC for FM and DM, together with the corresponding GIR values. The original
ROC analysis showed AUCs of 0.735 and 0.753 for FM and DM, respectively, while
the GIR values of IRC analysis are 0.200 and 0.229 for FM and DM, respectively.

4 Discussion

The American mathematician and engineer C. Shannon (1916-2001) built the foun-
dations of Information Theory in 1948 [21]; it formalizes the mathematical rules
underlying telecommunications and defines the general properties that communica-
tions systems should have in order to transmit information reliably and affordably
[23]. Since the theory provides objective measures of information, it is a pillar in
telecommunication technologies and has been used to model a variety of phenom-
ena in different fields, including physics [11], neuroscience [22], molecular biology
[7] and others.

We propose an information theoretic model in which SE , SP ; FPR and FNR
are interpreted as the probabilities of correct and incorrect signal transmission
through an asymmetric binary diagnostic channel; here a certain quantity of aver-
age information (namely, the Mutual Information) flows from the “hidden” status
of the disease to the reader, e.g., a radiologist interpreting mammograms. The
higher the MI, the higher the diagnostic information available to the physician in-
terpreting the test. Not surprisingly, this measure has already been hypothesized
as a possible tool to compare different classifiers [13]. However, the use of Infor-
mation Theory-derived indexes is quite limited in medical-statistics literature; an
example is given by the Akaike information criterion [20], based on entropy, which
is a measure of the relative quality of a statistical model for a given set of data;
nevertheless it is not useful to assess the information associated with a diagnostic
test [6].

In our model, IRC analysis provides two different informational measures of test
accuracy, namely the Information Ratio and the Global Information Ratio. IR ex-
presses, within the interval 0...1, how much information on the disease a dichoto-
mous test carries on compared to the standard of reference, that is compared to the
ideal channel operating without the “noise” associated to incorrect diagnosis. Of
note, IR results from a MI-Curve representing the M1 values at all possible pre-test
probabilities of disease. Consequently, this measure is not only independent from
this probability in a given clinical experiment, but shows the additional advan-
tage of expressing the maximum information for all clinical scenarios at one time
(e.g., screening or high-pre-test probability populations). The typical MI-Curve
behavior of figure 3 derives from a mathematical structure of the corresponding
formula, which is similar to that of the binary entropy (13) [5]; so the curve tends
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to zero when the prevalence approaches 0 or 1, as it should be from the intuitive
point of view: a diagnostic test applied to a population where all the members are
ill (or healthy) carries no information. On the contrary, the maximum amount of
diagnostic information is associated to the situation where the prevalence is close
to 1/2.

Even though there may be preference for either specificity or sensitivity, due to
the kind of diagnostic test (screening or not) or to the costs for FPs and FNs,
nevertheless a single statistical measure that can summarize the global quality of
a dichotomous diagnostic test is still lacking [18] (p.340). IR gives such a measure.
While the IR is applicable to tests providing a dichotomous result, the GIR applies
to tests yielding continuous values (e.g. prostate PSA) or ordered categories (e.g.
7-points scale in breast imaging), corresponding to multiple cut-offs of specificity.
Indeed, the GIR is the ratio between the areas under the Information Ratio Curve
of the test and the Limit Information Curve, i.e. the reference curve representing
the maximum amount of information we can gain by varying 1-SP on the abscissa
when SEis fixed to 100%. In this setting, the GIR plays the role of an informational
summary measure [16], that expresses the accuracy by using a single number, and
facilitates the comparison between diagnostic tests.

ROC analysis, which is the state-of-the-art method for describing the diagnostic
accuracy of a test, is universally used and shows well known advantages [4], [8],
[15]. Which are the potential, additional benefits of using the informational anal-
ysis? In the Appendix, we briefly summarize some technical points and show how
it is possible to go over some weakness of the classical ROC/AUC approach.

On this basis we believe that, as usual for a new-born instrument, both theoretical
refinements and concrete clinical applications will probably clarify in which scenar-
ios our method can support or even outperform ROC analysis; however, whether
this potential is realized will be assessed by clinicians. At present, we suggest the
use of IRC analysis as a complement to strengthen ROC analysis results with a
formally consistent and independent method. Why? In IRC analysis, accuracy is
calculated directly from the amount of information flowing through a diagnostic
channel, which in turn depends on the channel properties. In standard analysis,
information related to test properties can be inferred only indirectly: we suppose
something on diagnostic information based on the count of the expected outcomes,
but we do not have a direct access inside the “black box” of the test, in particular
to quantify the information made available by the test to obtain the sensitivity
and specificity measured by ROC analysis under certain clinical conditions. Infor-
mational indexes do provide such a quantification. Three potential consequences
may occur in this respect. The first one is exemplified by the coincidence between
highest IR and the cut-off of 1-SP/SE of ROC analysis we observed for FM in the
paper of Pisano et al. [19]. In this situation, best-coupled sensitivity/specificity
corresponds to the maximum information provided by the test, i.e. IRC analysis
shows the upper limit of tests capabilities. One might assume that if they corre-
spond to suboptimal test accuracy, no further improvement is permitted unless
changing the diagnostic channel (e.g., by incorporating a technological develop-
ment such as digital mammography) or supplying it with additional diagnostic
tools (change in diagnostic workup). The second scenario also emerges from our
clinical example [19]: the IR cut-off for DM “moved” to the right of the ROC anal-
ysis cut-off, leading to an increase in SE (49 cancers) at expense of a significant
increase in FPs (2175 cases). Our explanation for this finding is that higher infor-
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mation provided by DM translated in better visibility of subtler anatomical details
mimicking malignancy (e.g., spiculated margins or microcalcifications) that might
have acted as confounders, thus increasing sensitivity and decreasing specificity. In
a third, theoretical scenario, the IR cut-off moves “to the left” of the ROC analysis
cut-off, suggesting that information provided by a certain test tends to decrease
sensitivity and increase specificity. This might occur if the higher information car-
ried by this test is used to enlighten the signs that tend to exclude the disease.
The last two scenarios suggest that, regardless a rigorous quantification of infor-
mation, the comparison between ROC analysis and IRC analysis has the potential
to indicate the “direction” (sensitivity or specificity) towards which information
associated to a new technology “move” when interacting with the reader. Again,
one can suppose that such a knowledge is of help in refining diagnostic tools (e.g.,
by guiding the technological upgrade) and/or diagnostic strategies. Whether this
is clinically acceptable/relevant or not depends on the specific setting, the type
of diagnostic test, and the decision rules used to establish the proper cut-off. We
hypothesize that such a capability is of potential relevance at least for all those
tests providing the diagnosis with inherently different technologies, i.e. channels
with different informational properties.

The IRC analysis suffers, however, some limitations.

First, similarly to ROC analysis [15], our method is based on the weak assumption
that, when human readers participate into the diagnostic process (as occurs for
radiologists), they always interpret correctly information provided by the test, so
that FN and FP cases depends on the test only. In other words TRC analysis,
in its present form, probably overestimates diagnostic accuracy and does not ac-
count for intra- and inter-reader variability. How to overcome these limitations?
We suggest that informational indexes might be obtained for each of the readers
of a “multireader factorial” study design, which is currently recommended for con-
ventional analysis of accuracy [17]. In this multireader/multicase model, the same
patients undergo all of the diagnostic tests under study and an adequate num-
ber of readers interpret the results from all the diagnostic tests. One can assume
that the comparison of IR or GIR values measured on the same clinical setting
is per se indicative of readers-related variability. On the other hand, similarly to
conventional analysis, IRC analysis might be complemented by calculation from
raw data of classical indexes of intra- and/or inter-rater agreement for different
number of raters and types of variable, such as Cohen’s kappa or Intraclass Cor-
relation Coefficient (ICC). Lines of future improvement of IRC analysis include
the development of methods: i) to adjust o and [ errors of the transition matrix
for readers-related variability; ii) to adjust for variability in the specific setting of
multireader/multicase approach, possibly in accordance with the “random effects”
model, that is by treating the variation in readers performance as an independent
source of variability [17].

Second, our model does not yet include: i) a strategy to fit properly the empiric
GIR curve; and i) the statistical rules to compare different GIRs, that is to attest
if different values of GIRs are statistically significant. On the other hand both
points ¢) and ) constitutes by themselves an entire field of research [15], as it
happended at the very beginning for ROC analysis. We believe all the above points
can be faced confidently in future works, and their current lack does not influence
qualitatively our results.
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5 Conclusions

We proposed a conceptual framework based on Information Theory, in which: )
the diagnostic test is equivalent to an asymmetric binary transmission channel;
11) the diagnostic process can be modeled using Mutual Information, which is a
well-established measurement of the information exchanged through the channel
between a transmission source (assumed to be represented by the disease) and a re-
ceiver (assumed to be represented by the physician). On this basis, the accuracy of
a diagnostic test can be expressed, in informational terms, through two summary
measures, namely the IR and GIR, which apply to tests providing dichotomous
and continuous results, respectively. Potential advantages of using informational
indexes are related to the independency from pre-test probability and the capa-
bility to refine conventional analysis of accuracy (e.g., ROC analysis) by assessing
the type and limits of diagnostic information that a certain test can vehicle, that
is by objectifying how much diagnostic information of a certain type (e.g., breast
cancer) is transmitted given test properties (e.g., being a film or digital image
obtained using X-rays). Using data from a previous study, we showed that in-
formational analysis is applicable to a real clinical scenario and can represent an
informational counterpart of standard analysis of accuracy based on ROC curves.

6 Appendix

Here we discuss some technical points regarding the additional benefits of using the
IRC analysis instead of (or in conjunction with) the classical ROC/AUC approach.

The cut-off problem - When we are dealing with multi-value diagnostic tests, we
have the problem of choosing the best decision threshold. Even though there
are several possible approaches to solve this problem, the choice for the optimal
cut-off is substantially arbitrary [15], and depends from the context. Here are
some examples: (4) from the geometrical point of view it could be obvious to
select the point P = (1 — SP,SE) on the ROC curve which minimizes the
Fuclidean distance between the higher-left corner of the ROC space, whose
coordinates are (0,1), and P itself. But this choice is acceptable, in clinical
practice, only when SE or SP have high values; the informational approach
and the figure 4 explain us why. (i) from the classifier point of view, the
best reasonable choice is to use the decision threshold which maximize the
summation TP 4+ TN [3], or something more elaborated, such as any objective
function that is a linear combination of true and false positive rates via the
convez hull [8]. (i11) another possible method is maximizing SE + SP, that is
equivalent to the use of the so-called Youden index [9]; it uses the maximum
vertical distance of ROC curve from the point (x, y) on the diagonal (chance)
line. So Youden index maximizes the difference between SE and 1-SP, that
is SE + SP — 1. (i) the clinical practice of the 7-points scale we used in
the Pisano’s example, uses a cut-off essentially based on the semantics of the
graded scale.

If we apply all these different criterions on table 1, we would get completely
different cut-offs.

Among all these reasonably, but arbitrary choice of the optimal cut-off, the
IRC analysis is the only to offer a criterion based on the maximization of the



Measuring the Performance of a Diagnostic Test 15

informational flow between the patient and the clinician, that is the scope
of any good diagnostic system. Since we have only one coherent measure of
information (remember the unicity theorem of Khinchin [12]), this method is
even the only “objective” in the case we assign the same cost to FP and FN.

Fallacy of the undistributed middle - ROC curves, even if widely used, have at
least one significant pitfall, that is the so called “fallacy of the undistributed
middle” [8]: all random models score an AUC of 0.5, but not every model
that scores an AUC of 0.5 is random; in other words AUC = 0.5 does not
necessarily imply that the classifier is no better than random guessing. An
interesting example of this situation is given in figure 4a of [3], where the “two-
thresholds classifier” assumes that a certain quantity ¢, being below a threshold
t1 or exceeding a threshold t2 > t1, indicates disease; while g € [t1,t2] means
normal. Systolic blood pressure or expression of a gene could be an example of
such a situation. If we use ROC analysis, the AUC equals 0.5 (figure 4b of [3]),
and so the AUC approach is not able to discriminate this good classifier from
a random one. On the contrary, if one use the IRC approach, one can clearly
discriminate this classifier, characterized by GIR = 0.342, from the random
one (GIR = 0).

IRC analysis gives us a global evaluation of the diagnostic test performance (GIR)
and a choice for the best threshold of specificity. As a consequence it could be
considered, at least in principle, as a competitor of ROC curves. Unfortunately,
up to this moment, the IRC tool is not yet complete, since it lacks a strategy to fit
properly the empiric GIR curve and a statistical rule to compare different GIRs,
that is to attest if different values of GIRs are statistically significant.
Nevertheless we can appreciate the fact that IRC analysis is able to strengthen
ROC analysis, taking it to a deeper level. We suggest here two issues in this
perspective:

Informational chart - The iso-informational curves of figure 4, that are drawn on
the ROC plane, could be used as a sort of graph paper (informational chart)
over which one can draw a ROC curve; this allow to directly visualize the
information associated to each point of the ROC curve, integrating the ROC
and the IRC approaches together.

The worst ROC curves are good - Always from figure 4, we can note that each iso-
level curve of the upper left side of the diagram has a same-level correspondence
in the lower right side of the same diagram. Even if this is not usual in clinical
practice, this means that, in an informational sense, a bad diagnostic test,
whose ROC curve stands entirely below the diagonal, performs as a good one,
whose ROC curve stands entirely above the diagonal. This is not surprising,
since the complement of a systematically incorrect test result is systematically
correct. This would suggest that a more correct measure of the diagnostic test
performance using the ROC approach, with a ROC curve entirely standing
above or below the diagonal, should be the AUC* between the ROC curve and
the diagonal, that is AUC™ = |[AUC — 0.5].
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Fig. 1 The disease is a hidden, objective status of the patient that can be revealed to the
physician through the “black box” of a diagnostic test. It corresponds to a binary asymmetric
diagnostic channel, whose behavior is described by the transition matrix I" (5).
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Fig. 2 Capacity of the diagnostic channel and pre-test probability of disease p},(1) that
achieves this capacity.
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Fig. 3 Mutual Information Curves (MI-Curves) and Information Ratios (IR) of i) the stan-
dard of reference (SR), for which SE = SP =1 ii) a diagnostic test with SE = SP = 0.99
(A) 74) a diagnostic test with SE = 0.80, SP = 0.90 (B) and iv) the random test for which
SE=SP=0.5(C, '+
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Fig. 5 The Limit Information Curve, obtained when a = 0, and the IRC of a hypothetical
simulated test
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Table 1 Information Ratio values calculated on data extracted from Table 3 of the study
[19]. Highest IRs are highlighted in bold. Asterisks indicate the values of SE /1-SP T-points
scale threshold used in the ROC analysis of the original study.

Film Mammography

Score 7 6 5 4 3 2 1
IR 0.019 0.056 0.093 0.178 0.170 0.098 0.000
TP 13 37 62 136 171 204 335
FN 322 298 273 199 164 131 0
TN 42406 42401 42356 41488 | 39232 32355 0
FP 4 9 54 922 3178 10055 42410
SE 0.039 0.110 0.185  0.406* 0.510 0.609 1.000

1-SP 0.000 0.000 0.001  0.022* 0.075 0.237 1.000

Digital Mammography

Score 7 6 5 4 3 2 1
IR 0.015 0.042 0.078 0.178 | 0.201 0.115 0.000
TP 10 28 53 138 187 212 334
FN 324 306 281 196 147 122 0
TN 42235 42224 42180 41204 | 39029 32466 0
FP 1 12 56 1032 3207 9770 42236
SE 0.030 0.084 0.159  0.413* 0.560 0.635 1.000

1-SP 0.000 0.000 0.001  0.024* 0.076 0.231 1.000
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(a) Film mammography: the threshold corresponds to the point associated
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(b) Digital mammography: the threshold does not correspond to the point
associated with the maximum information

Fig. 6 IR curves for film and digital mammography, with the data of table 1 derived from
(19]
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