Skip to main content

Advertisement

Log in

CT image-based computer-aided system for orbital prosthesis rehabilitation

  • Original Article
  • Published:
Medical & Biological Engineering & Computing Aims and scope Submit manuscript

Abstract

In this paper, a computer-aided system for orbital prosthesis rehabilitation is introduced. With the system, a 3D model of the orbital prosthesis can be easily reconstructed from the CT image of a patient by referring to the normal eye of the patient, and the rehabilitation result by the model can be simulated before the surgery. This facilitates surgeons to design appropriate orbital prosthesis and improve rehabilitation esthetics. Based on the system, the preoperative surgery planning for orbital implant can also be made. This improves the reliability, safety and intuition of the rehabilitation surgery well. The system has been applied to clinical CT images of patients, and the experimental results show effectiveness and acceptability of the system in the clinic.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Allen PF, Watson G, Stassen L, McMillan AS (2000) Peri-implant soft tissue maintenance in patients with craniofacial implant retained prostheses. Int J Oral Maxillofac Surg 29:99–103

    Article  CAS  PubMed  Google Scholar 

  2. Ariani N, Visser A, van Oort RP, Kusdhany L, Rahardjo TB, Krom BP, van der Mei HC, Vissink A (2012) Current state of craniofacial prosthetic rehabilitation. Int J Prosthodont 26:57–67

    Article  Google Scholar 

  3. Artopoulou LL, Montgomery PC, Wesley PJ, Lemon JC (2006) Digital imaging in the fabrication of ocular prostheses. J Prosthet Dent 95:327–330

    Article  PubMed  Google Scholar 

  4. Chiarelli T, Lamma E, Sansoni T (2010) A fully 3D work context for oral implant planning and simulation. Int J Comput Assist Radiol Surg 5:57–67

    Article  PubMed  Google Scholar 

  5. Dam EB, Koch M, Lillholm M (1998) Quaternions, interpolation and animation. Technical Report DIKU-TR-98-5

  6. Fernandes CMS, Mattos BSC, Cavalcanti MDGP, Fonseca LC, Serra MDC (2012) Peri-orbital bone dimensional analysis using computed tomography for placement of osseointegrated implants. Braz J Oral Sci 11:1–9

    Google Scholar 

  7. Granstrom G (2005) Osseointegration in irradiated cancer patients: an analysis with respect to implant failures. J Oral Maxillofac Surg 63:579–585

    Article  PubMed  Google Scholar 

  8. Karakoca S, Aydin C, Yilmaz H, Bal BT (2008) Survival rates and periimplant soft tissue evaluation of extraoral implants over a mean follow-up period of three years. J Prosthes Dent 100:458–464

    Article  Google Scholar 

  9. Karakoca S, Aydin C, Yilmaz H, Korkmaz T (2008) An impression technique for implant-retained orbital prostheses. J Prosthet Dent 100:52–55

    Article  CAS  PubMed  Google Scholar 

  10. Klein M, Menneking H, Neumann K, Hell B, Bier J (1997) Computed tomographic study of bone availability for facial prosthesis-bearing endosteal implants. Int J Oral Maxillofac Surg 26:268–271

    Article  CAS  PubMed  Google Scholar 

  11. Kovacs AF (2000) A follow-up study of orbital prostheses supported by dental implants. J Oral Maxillofac Surg 58:19–23

    Article  CAS  PubMed  Google Scholar 

  12. Lorensen WE, Cline HE (1987) Marching cubes: a higher solution surface construction algorithm. Comput Graph (SIGGRAPH’87) 21:163–169

    Article  Google Scholar 

  13. Roumanas ED, Freymiller EG, Chang TL, Aghaloo T, Beumer J (2002) Implant-retained prostheses for facial defects: an up to 14-year follow-up report on the survival rates of implants at UCLA. Int J Prosthodont 15:325–332

    PubMed  Google Scholar 

  14. Salinas TJ (2010) Prosthetic rehabilitation of defects of the head and neck. Semin Plastic Surg 24:299–308

    Article  Google Scholar 

  15. Tolman DE, Tjellstrom A, Woods JE (1998) Reconstructing the human face by using the tissue-integrated prosthesis. Mayo Clin Proc 73:1171–1175

    Article  CAS  PubMed  Google Scholar 

  16. Veerareddy C, Nair KC, Reddy GR (2012) Simplified technique for orbital prosthesis fabrication: a clinical report. J Prosthodont 21:561–568

    Article  PubMed  Google Scholar 

  17. Verstreken K, Cleynenbreugel JV, Martens K, Marchal G, Steenberghe DV, Suetens P (1998) An image-guided planning system for endosseous oral implants. IEEE Trans Med Imaging 17:842–852

    Article  CAS  PubMed  Google Scholar 

  18. Wong KCH, Siu TYH, Heng PA, Sun HQ (1998) Interactive volume cutting. Graph Interface 98:99–106

    Google Scholar 

  19. Zhang X, Chen S, Huang Y, Chang S (2007) Computer-assisted design of orbital Implants. Int J Oral Maxillofac Implant 22:132–137

    Google Scholar 

Download references

Acknowledgments

This work is supported in part by the National Natural Science Foundation of China (61375020), the National 973 Program of China (2013CB329401) and Cross Research Fund of Biomedical Engineering of Shanghai JiaoTong University (YG2013ZD02, YG2012MS19).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lisheng Wang.

Additional information

Shuang Li and Caiwen Xiao have contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, S., Xiao, C., Duan, L. et al. CT image-based computer-aided system for orbital prosthesis rehabilitation. Med Biol Eng Comput 53, 943–950 (2015). https://doi.org/10.1007/s11517-015-1307-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11517-015-1307-6

Keywords

Navigation