Skip to main content
Log in

Biomechanics of high-grade spondylolisthesis with and without reduction

  • Original Article
  • Published:
Medical & Biological Engineering & Computing Aims and scope Submit manuscript

Abstract

The clinical advantages of reducing spondylolisthesis over fusion in situ have several intuitive reasons such as restore the spinal column into a more anatomic relationship and alignment. However, there is only little evidence in the literature supporting the theoretical advantages of reduction, and its effect on spinopelvic alignment remains poorly defined. In this study, a comprehensive finite element model was developed to analyze the biomechanics of the spine after spinal fusion at L5–S1 in both types of high-grade spondylolisthesis (balanced and unbalanced pelvis). The relevant clinical indices (i.e. spondylolisthesis grade and Dubousset lumbosacral angle), the displacement of L4–L5, pressure within the annulus and nucleus, and stress at L4–L5 were evaluated and compared. The model can well predict the changes of the important clinical indices during the surgery. For a balanced pelvis, the reduction has a minimal effect on the biomechanical conditions at the adjacent level during postsurgical activities. In the unbalanced case, reduction induced larger deformation in the lumbosacral region and a higher stress concentration at adjacent level. Whether such a stress concentration can lead to long-term disc degeneration is not known. The results provide additional information for the clinician considering reduction of high-grade spondylolisthesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Aubin CE, Dansereau J, Parent F, Labelle H, de Guise JA (1997) Morphometric evaluations of personalised 3D reconstructions and geometric models of the human spine. Med Biol Eng Comput 35:611–618

    Article  CAS  PubMed  Google Scholar 

  2. Bradford DS (1979) Treatment of severe spondylolisthesis: a combined approach for reduction and stabilization. Spine 4:423–429

    Article  CAS  PubMed  Google Scholar 

  3. Bradford DS, Boachie-Adjei O (1990) Treatment of severe spondylolisthesis by anterior and posterior reduction and stabilization. A long-term follow-up study. J Bone Joint Surg 72:1060–1066

    CAS  PubMed  Google Scholar 

  4. Breau C, Shirazi-Adl A, de Guise J (1991) Reconstruction of a human ligamentous lumbar spine using CT images—a three-dimensional finite element mesh generation. Ann Biomed Eng 19:291–302

    Article  CAS  PubMed  Google Scholar 

  5. Chen C-S, Cheng C-K, Liu C-L, Lo W-H (2001) Stress analysis of the disc adjacent to interbody fusion in lumbar spine. Med Eng Phys 23:485–493

    Article  Google Scholar 

  6. Chosa E, Totoribe K, Tajima N (2004) A biomechanical study of lumbar spondylolysis based on a three-dimensional finite element method. J Orthop Res 22:158–163

    Article  PubMed  Google Scholar 

  7. Delorme S, Petit Y, de Guise JA, Labelle H, Aubin CE, Dansereau J (2003) Assessment of the 3-D reconstruction and high-resolution geometrical modeling of the human skeletal trunk from 2-D radiographic images. IEEE Trans Biomed Eng 50:989–998

    Article  CAS  PubMed  Google Scholar 

  8. El-Rich M, Villemure I, Labelle H, Aubin CE (2009) Mechanical loading effects on isthmic spondylolytic lumbar segment: finite element modelling using a personalised geometry. Comput Methods Biomech Biomed Eng 12:13–23

    Article  CAS  Google Scholar 

  9. El-Rich M, Arnoux P-J, Wagnac E, Brunet C, Aubin CE (2009) Finite element investigation of the loading rate effect on the spinal load-sharing changes under impact conditions. J Biomech 42:1252–1262

    Article  PubMed  Google Scholar 

  10. Guan Y, Yoganandan N, Moore J, Pintar FA, Zhang J, Maiman DJ, Laud P (2007) Moment-rotation responses of the human lumbosacral spinal column. J Biomech 40:1975–1980

    Article  PubMed  Google Scholar 

  11. Hensinger RN (1989) Spondylolysis and spondylolisthesis in children and adolescents. J Bone Joint Surg Am 71:1098

    CAS  PubMed  Google Scholar 

  12. Hresko MT, Labelle H, Roussouly P, Berthonnaud E (2007) Classification of high-grade spondylolistheses based on pelvic version and spine balance: possible rationale for reduction. Spine 32:2208–2213

    Article  PubMed  Google Scholar 

  13. Humbert L, de Guise JA, Aubert B, Godbout B, Skalli W (2009) 3D reconstruction of the spine from biplanar X-rays using parametric models based on transversal and longitudinal inferences. Med Eng Phys 31:681–687

    Article  CAS  PubMed  Google Scholar 

  14. Kasliwal MK, Smith JS, Shaffrey CI, Saulle D, Lenke LG, Polly DW Jr, Ames CP, Perra JH (2012) Short-term complications associated with surgery for high-grade spondylolisthesis in adults and pediatric patients: a report from the scoliosis research society morbidity and mortality database. Neurosurgery 71:109–116

    Article  PubMed  Google Scholar 

  15. Konz RJ, Goel VK, Grobler LJ, Grosland NM, Spratt KF, Scifert JL, Sairyo K (2001) The pathomechanism of spondylolytic spondylolisthesis in immature primate lumbar spines: in vitro and finite element assessments. Spine 26:E38–E49

    Article  CAS  PubMed  Google Scholar 

  16. Kumar M, Baklanov A, Chopin D (2001) Correlation between sagittal plane changes and adjacent segment degeneration following lumbar spine fusion. Eur Spine J 10:314–319

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Labelle H, Mac-Thiong JM (2011) Pre and post-operative assessment of sagittal balance for high-grade developmental spondylolisthesis. ArgoSpine News J 23:28–32

    Article  Google Scholar 

  18. Labelle H, Roussouly P, Berthonnaud E, Transfeldt E, O’Brien M, Chopin D, Hresko T, Dimnet J (2004) Spondylolisthesis, pelvic incidence, and spinopelvic balance: a correlation study. Spine 29:2049–2054

    Article  PubMed  Google Scholar 

  19. Labelle H, Roussouly P, Chopin D, Berthonnaud E, Hresko T, O’Brien M (2008) Spino-pelvic alignment after surgical correction for developmental spondylolisthesis. Eur Spine J 17:1170–1176

    Article  PubMed  PubMed Central  Google Scholar 

  20. Mac-Thiong JM, Labelle H (2006) A proposal for a surgical classification of pediatric lumbosacral spondylolisthesis based on current literature. Eur Spine J 15:1425–1435

    Article  PubMed  Google Scholar 

  21. Mardjetko S, Albert T, Andersson G, Bridwell K, DeWald C, Gaines R, Geck M, Hammerberg K, Herkowitz H, Kwon B (2005) Spine/SRS spondylolisthesis summary statement. Spine 30:S3

    Article  PubMed  Google Scholar 

  22. Martiniani M, Lamartina C, Specchia N (2012) “in situ” fusion or reduction in high-grade high dysplastic developmental spondylolisthesis (HDSS). Eur Spine J 21:134–140

    Article  PubMed Central  Google Scholar 

  23. Meyerding HW (1931) Spondylolisthesis. J Bone Joint Surg 13:39–48

    Google Scholar 

  24. Muschik M, Zippel H, Perka C (1997) Surgical management of severe spondylolisthesis in children and adolescents: anterior fusion in situ versus anterior spondylodesis with posterior transpedicular instrumentation and reduction. Spine 22:2036–2042

    Article  CAS  PubMed  Google Scholar 

  25. Natarajan RN, Garretson Iii RB, Biyani A, Lim TH, Andersson GBJ, An HS (2003) Effects of slip severity and loading directions on the stability of isthmic spondylolisthesis: a finite element model study. Spine 28:1103–1112

    PubMed  Google Scholar 

  26. O’Brien JP, Mehdian H, Jaffray D (1994) Reduction of severe lumbosacral spondylolisthesis. A report of 22 cases with a ten-year follow-up period. Clin Orthop Relat Res 300:64–69

    PubMed  Google Scholar 

  27. Osterman K, Schlenzka D, Poussa M, Seitsalo S, Virta L (1993) Isthmic spondylolisthesis in symptomatic and asymptomatic subjects, epidemiology, and natural history with special reference to disk abnormality and mode of treatment. Clin Orthop Relat Res 297:65–70

    PubMed  Google Scholar 

  28. Park P, Garton HJ, Gala VC, Hoff JT, McGillicuddy JE (2004) Adjacent segment disease after lumbar or lumbosacral fusion: review of the literature. Spine 29:1938–1944

    Article  PubMed  Google Scholar 

  29. Poussa M, Schlenzka D, Seitsalo S, Ylikoski M, Hurri H, Osterman K (1993) Surgical treatment of severe isthmic spondylolisthesis in adolescents: reduction or fusion in situ. Spine 18:894–901

    Article  CAS  PubMed  Google Scholar 

  30. Roussouly P, Meyrat RB (2011) High-grade spondylolisthesis: partial reduction. In: Bridwell K, DeWald R (eds) Textbook of spinal surgery. Lippincott Williams & Wilkins, Philadelphia, p 638

    Google Scholar 

  31. Sairyo K, Goel VK, Grobler LJ, Ikata T, Katoh S (1998) The pathomechanism of isthmic lumbar spondylolisthesis: a biomechanical study in immature calf spines. Spine 23:1442–1446

    Article  CAS  PubMed  Google Scholar 

  32. Sairyo K, Katoh S, Ikata T, Fujii K, Kajiura K, Goel VK (2001) Development of spondylolytic olisthesis in adolescents. Spine J 1:171–175

    Article  CAS  PubMed  Google Scholar 

  33. Sairyo K, Goel VK, Masuda A, Vishnubhotla S, Faizan A, Biyani A, Ebraheim N, Yonekura D, Murakami R-I, Terai T (2006) Three dimensional finite element analysis of the pediatric lumbar spine. Part II: biomechanical change as the initiating factor for pediatric isthmic spondylolisthesis at the growth plate. Eur Spine J 15:930–935

    Article  PubMed  PubMed Central  Google Scholar 

  34. Schmidt H, Kettler A, Heuer F, Simon U, Claes L, Wilke H-J (2007) Intradiscal pressure, shear strain, and fiber strain in the intervertebral disc under combined loading. Spine 32:748–755

    Article  PubMed  Google Scholar 

  35. Sevrain A, Aubin C-E, Gharbi H, Wang X, Labelle H (2012) Biomechanical evaluation of predictive parameters of progression in adolescent isthmic spondylolisthesis: a computer modeling and simulation study. Scoliosis 7:1–9

    Article  Google Scholar 

  36. Shirazi-Adl A (2006) Analysis of large compression loads on lumbar spine in flexion and in torsion using a novel wrapping element. J Biomech 39:267–275

    Article  CAS  PubMed  Google Scholar 

  37. Wagnac E, Arnoux P-J, As Garo, El-Rich M, Aubin CE (2011) Calibration of hyperelastic material properties of the human lumbar intervertebral disc under fast dynamic compressive loads. J Biomech Eng 133:101007

    Article  PubMed  Google Scholar 

  38. Yamamoto S, Tanaka E, Mihara K, Inoue H, Ohmori K (1999) Finite element evaluation of spondylolysis taking account of nonlinear mechanical properties of ligaments and annulus fibrosus. JSME Int J, Ser C 42:521–531

    Article  Google Scholar 

Download references

Acknowledgments

This study was funded by the Natural Sciences and Engineering Research Council of Canada (Industrial Research Chair program with Medtronic of Canada) and a research scholarship from Shriners Hospitals for Children.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carl-Eric Aubin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, W., Aubin, CE., Cahill, P. et al. Biomechanics of high-grade spondylolisthesis with and without reduction. Med Biol Eng Comput 54, 619–628 (2016). https://doi.org/10.1007/s11517-015-1353-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11517-015-1353-0

Keywords

Navigation