Skip to main content
Log in

EEG phase patterns reflect the representation of semantic categories of objects

  • Original Article
  • Published:
Medical & Biological Engineering & Computing Aims and scope Submit manuscript

Abstract

Oscillations of electroencephalographic signals represent the cognitive processes arose from the behavioral task and sensory representations across the mental state activity. Previous studies have shown the relation between event-related EEG and sensory-cognitive representation and revealed that categorization of presented object can be successfully recognized using recorded EEG signals when subjects view objects. Here, EEG signals in conjunction with a multivariate pattern recognition technique were used for investigating the possibility to identify conceptual representation based on the presentation of 12 semantic categories of objects (5 exemplars per category). Using multivariate stimulus decoding methods, surprisingly, we demonstrate that how objects are discriminated from phase pattern of EEG signals across the time in low-frequency band (1–4 Hz), but not from power of oscillatory brain signals in the same frequency band. In contrast, discrimination accuracy from the power of EEG signals has significantly higher than the performance from phase of EEG signal in the high-frequency band (20–30 Hz). Moreover, our results indicate that how the accuracy of prediction changes between various areas of brain continuously across the time. In particular, we find that, during the object categorization task, the inter-trial phase coherence in low-frequency band is significantly higher than other frequency in various regions of interests. This measure is associated with decoding pattern across the time. These results suggest that the mechanism underlying conceptual representation can be mediated by the phase of oscillatory neural activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Bedrosian E (1962) A product theorem for hilbert transforms [WWW Document]. http://www.rand.org/pubs/research_memoranda/RM3439.html. Accessed on 13 May 2013

  2. Behroozi M, Daliri MR (2014) RDLPFC area of the brain encodes sentence polarity: a study using fMRI. Brain Imaging Behav. doi:10.1007/s11682-014-9294-z

    Google Scholar 

  3. Behroozi M, Daliri MR (2014) Predicting brain states associated with object categories from fMRI data. J Integr Neurosci 13:645–667. doi:10.1142/S0219635214500241

    Article  PubMed  Google Scholar 

  4. Behroozi M, Daliri MR, Boyaci H (2011) Statistical analysis methods for the fMRI data. BCN 2(4):67–74

    Google Scholar 

  5. Carlson TA, Schrater P, He S (2003) Patterns of activity in the categorical representations of objects. J Cogn Neurosci 15:704–717. doi:10.1162/jocn.2003.15.5.704

    Article  PubMed  Google Scholar 

  6. Cox DD, Savoy RL (2003) Functional magnetic resonance imaging (fMRI) “brain reading”: detecting and classifying distributed patterns of fMRI activity in human visual cortex. NeuroImage 19:261–270

    Article  PubMed  Google Scholar 

  7. Daliri MR, Behroozi M (2013) fMRI: clinical and research applications. OMICS J Radiol. doi:10.4172/2167-7964.1000e112

    Google Scholar 

  8. Daliri MR, Behroozi M (2014) Advantages and disadvantages of resting state functional connectivity magnetic resonance imaging for clinical applications. OMICS J Radiol. doi:10.4172/2167-7964.1000e123

    Google Scholar 

  9. Donner TH, Siegel M (2011) A framework for local cortical oscillation patterns. Trends Cogn Sci 15:191–199. doi:10.1016/j.tics.2011.03.007

    Article  PubMed  Google Scholar 

  10. Duda PEH, David G, Stork Richard O (2000) Pattern Classification, 2nd edn. Wiley-Interscience, New York

    Google Scholar 

  11. Fell J, Dietl T, Grunwald T, Kurthen M, Klaver P, Trautner P, Schaller C, Elger CE, Fernández G (2004) Neural bases of cognitive ERPs: more than phase reset. J Cogn Neurosci 16:1595–1604. doi:10.1162/0898929042568514

    Article  PubMed  Google Scholar 

  12. Gerlach C (2007) A review of functional imaging studies on category specificity. J Cogn Neurosci 19:296–314. doi:10.1162/jocn.2007.19.2.296

    Article  PubMed  Google Scholar 

  13. Gruber T, Trujillo-Barreto NJ, Giabbiconi C-M, Valdés-Sosa PA, Müller MM (2006) Brain electrical tomography (BET) analysis of induced gamma band responses during a simple object recognition task. NeuroImage 29:888–900. doi:10.1016/j.neuroimage.2005.09.004

    Article  PubMed  Google Scholar 

  14. Haxby JV, Gobbini MI, Furey ML, Ishai A, Schouten JL, Pietrini P (2001) Distributed and overlapping representations of faces and objects in ventral temporal cortex. Science 293:2425–2430. doi:10.1126/science.1063736

    Article  CAS  PubMed  Google Scholar 

  15. Haynes J-D, Rees G (2006) Decoding mental states from brain activity in humans. Nat Rev Neurosci 7:523–534. doi:10.1038/nrn1931

    Article  CAS  PubMed  Google Scholar 

  16. Hipp JF, Engel AK, Siegel M (2011) Oscillatory synchronization in large-scale cortical networks predicts perception. Neuron 69:387–396. doi:10.1016/j.neuron.2010.12.027

    Article  CAS  PubMed  Google Scholar 

  17. Ishai A, Ungerleider LG, Martin A, Schouten JL, Haxby JV (1999) Distributed representation of objects in the human ventral visual pathway. Proc Natl Acad Sci USA 96:9379–9384

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Johnson JS, Olshausen BA (2003) Timecourse of neural signatures of object recognition. J Vis 3:4. doi:10.1167/3.7.4

    Article  Google Scholar 

  19. Kamitani Y, Tong F (2005) Decoding the visual and subjective contents of the human brain. Nat Neurosci 8:679–685. doi:10.1038/nn1444

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Kay KN, Naselaris T, Prenger RJ, Gallant JL (2008) Identifying natural images from human brain activity. Nature 452:352–355. doi:10.1038/nature06713

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Kayser C, Montemurro MA, Logothetis NK, Panzeri S (2009) Spike-phase coding boosts and stabilizes information carried by spatial and temporal spike patterns. Neuron 61:597–608. doi:10.1016/j.neuron.2009.01.008

    Article  CAS  PubMed  Google Scholar 

  22. Kohav R (1995) A study of cross-validation and bootstrap for accuracy estimation and model selection. In: Proceedings of the fourth international joint conference on artificial intelligence (San Mateo, CA: Morgan Kaufmann) 2(2):1137–1143

  23. Kreiman G (2004) Neural coding: computational and biophysical perspectives. Phys Life Rev 1:71–102. doi:10.1016/j.plrev.2004.06.001

    Article  Google Scholar 

  24. Lakatos P, Musacchia G, O’Connel MN, Falchier AY, Javitt DC, Schroeder CE (2013) The spectrotemporal filter mechanism of auditory selective attention. Neuron 77:750–761. doi:10.1016/j.neuron.2012.11.034

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Lopour BA, Tavassoli A, Fried I, Ringach DL (2013) Coding of information in the phase of local field potentials within human medial temporal lobe. Neuron 79:594–606. doi:10.1016/j.neuron.2013.06.001

    Article  CAS  PubMed  Google Scholar 

  26. Lopour BA, Tavassoli A, Fried I, Ringach DL (2013) Coding of information in the phase of local field potentials within human medial temporal lobe. Neuron. doi:10.1016/j.neuron.2013.06.001

    PubMed  PubMed Central  Google Scholar 

  27. Makeig S, Westerfield M, Jung T-P, Enghoff S, Townsend J, Courchesne E, Sejnowski TJ (2002) Dynamic brain sources of visual evoked responses. Science 295:690–694. doi:10.1126/science.1066168

    Article  CAS  PubMed  Google Scholar 

  28. Martin A (2007) The representation of object concepts in the brain. Annu Rev Psychol 58:25–45. doi:10.1146/annurev.psych.57.102904.190143

    Article  PubMed  Google Scholar 

  29. Martin A, Chao LL (2001) Semantic memory and the brain: structure and processes. Curr Opin Neurobiol 11:194–201

    Article  CAS  PubMed  Google Scholar 

  30. Mathewson KE, Gratton G, Fabiani M, Beck DM, Ro T (2009) To see or not to see: prestimulus alpha phase predicts visual awareness. J Neurosci Off J Soc Neurosci 29:2725–2732. doi:10.1523/JNEUROSCI.3963-08.2009

    Article  CAS  Google Scholar 

  31. Mitchell TM, Shinkareva SV, Carlson A, Chang K-M, Malave VL, Mason RA, Just MA (2008) Predicting human brain activity associated with the meanings of nouns. Science 320:1191–1195. doi:10.1126/science.1152876

    Article  CAS  PubMed  Google Scholar 

  32. Montemurro MA, Rasch MJ, Murayama Y, Logothetis NK, Panzeri S (2008) Phase-of-firing coding of natural visual stimuli in primary visual cortex. Curr Biol CB 18:375–380. doi:10.1016/j.cub.2008.02.023

    Article  CAS  PubMed  Google Scholar 

  33. Mormann F, Lehnertz K, David PE, Elger C (2000) Mean phase coherence as a measure for phase synchronization and its application to the EEG of epilepsy patients. Phys Nonlinear Phenom 144:358–369. doi:10.1016/S0167-2789(00)00087-7

    Article  Google Scholar 

  34. Ng BSW, Logothetis NK, Kayser C (2013) EEG phase patterns reflect the selectivity of neural firing. Cereb Cortex 1991(23):389–398. doi:10.1093/cercor/bhs031

    Article  Google Scholar 

  35. Ng BSW, Logothetis NK, Kayser C (2013) EEG phase patterns reflect the selectivity of neural firing. Cereb Cortex 1991(23):389–398. doi:10.1093/cercor/bhs031

    Article  Google Scholar 

  36. Rousselet GA, Husk JS, Bennett PJ, Sekuler AB (2007) Single-trial EEG dynamics of object and face visual processing. NeuroImage 36:843–862. doi:10.1016/j.neuroimage.2007.02.052

    Article  PubMed  Google Scholar 

  37. Russell S, Norvig P (2009) Artificial intelligence: a modern approach, 3rd edn. Prentice Hall, Upper Saddle River

    Google Scholar 

  38. Sauseng P, Klimesch W (2008) What does phase information of oscillatory brain activity tell us about cognitive processes? Neurosci Biobehav Rev 32:1001–1013. doi:10.1016/j.neubiorev.2008.03.014

    Article  PubMed  Google Scholar 

  39. Schyns PG, Thut G, Gross J (2011) Cracking the code of oscillatory activity. PLoS Biol 9:e1001064. doi:10.1371/journal.pbio.1001064

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Shah AS, Bressler SL, Knuth KH, Ding M, Mehta AD, Ulbert I, Schroeder CE (2004) Neural dynamics and the fundamental mechanisms of event-related brain potentials. Cereb Cortex 14:476–483. doi:10.1093/cercor/bhh009

    Article  PubMed  Google Scholar 

  41. Siegel M, Warden MR, Miller EK (2009) Phase-dependent neuronal coding of objects in short-term memory. Proc Natl Acad Sci. doi:10.1073/pnas.0908193106

  42. Supp GG, Schlögl A, Trujillo-Barreto N, Müller MM, Gruber T (2007) Directed cortical information flow during human object recognition: analyzing induced eeg gamma-band responses in brain’s source space. PLoS ONE 2:e684. doi:10.1371/journal.pone.0000684

    Article  PubMed  PubMed Central  Google Scholar 

  43. Taghizadeh-Sarabi M, Daliri MR, Niksirat KS (2014) Decoding objects of basic categories from electroencephalographic signals using wavelet transform and support vector machines. Brain Topogr. doi:10.1007/s10548-014-0371-9

    PubMed  Google Scholar 

  44. VanRullen R, Busch NA, Drewes J, Dubois J (2011) Ongoing EEG phase as a trial-by-trial predictor of perceptual and attentional variability. Front Percept Sci 2:60. doi:10.3389/fpsyg.2011.00060

    CAS  Google Scholar 

  45. Varela F, Lachaux J-P, Rodriguez E, Martinerie J (2001) The brainweb: phase synchronization and large-scale integration. Nat Rev Neurosci 2:229–239. doi:10.1038/35067550

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mohammad Reza Daliri or Babak Shekarchi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Behroozi, M., Daliri, M.R. & Shekarchi, B. EEG phase patterns reflect the representation of semantic categories of objects. Med Biol Eng Comput 54, 205–221 (2016). https://doi.org/10.1007/s11517-015-1391-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11517-015-1391-7

Keywords

Navigation