Skip to main content
Log in

A novel approach for SEMG signal classification with adaptive local binary patterns

  • Original Article
  • Published:
Medical & Biological Engineering & Computing Aims and scope Submit manuscript

Abstract

Feature extraction plays a major role in the pattern recognition process, and this paper presents a novel feature extraction approach, adaptive local binary pattern (aLBP). aLBP is built on the local binary pattern (LBP), which is an image processing method, and one-dimensional local binary pattern (1D-LBP). In LBP, each pixel is compared with its neighbors. Similarly, in 1D-LBP, each data in the raw is judged against its neighbors. 1D-LBP extracts feature based on local changes in the signal. Therefore, it has high a potential to be employed in medical purposes. Since, each action or abnormality, which is recorded in SEMG signals, has its own pattern, and via the 1D-LBP these (hidden) patterns may be detected. But, the positions of the neighbors in 1D-LBP are constant depending on the position of the data in the raw. Also, both LBP and 1D-LBP are very sensitive to noise. Therefore, its capacity in detecting hidden patterns is limited. To overcome these drawbacks, aLBP was proposed. In aLBP, the positions of the neighbors and their values can be assigned adaptively via the down-sampling and the smoothing coefficients. Therefore, the potential to detect (hidden) patterns, which may express an illness or an action, is really increased. To validate the proposed feature extraction approach, two different datasets were employed. Achieved accuracies by the proposed approach were higher than obtained results by employed popular feature extraction approaches and the reported results in the literature. Obtained accuracy results were brought out that the proposed method can be employed to investigate SEMG signals. In summary, this work attempts to develop an adaptive feature extraction scheme that can be utilized for extracting features from local changes in different categories of time-varying signals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Ahonen T, Hadid A, Pietikainen M (2006) Face description with local binary patterns: application to face recognition. IEEE Trans Pattern Anal Mach Intell 28(12):2037–2041. doi:10.1109/TPAMI.2006.244

    Article  PubMed  Google Scholar 

  2. Al-Assaf Y (2006) Surface myoelectric signal analysis: dynamic approaches for change detection and classification. IEEE Trans Biomed Eng 53(11):2248–2256. doi:10.1109/TBME.2006.883628

    Article  PubMed  Google Scholar 

  3. Armas WD, Mamun KA, Chau T (2014) Vocal frequency estimation and voicing state prediction with surface EMG pattern recognition. Speech Commun 63–64:15–26. doi:10.1016/j.specom.2014.04.004

    Article  Google Scholar 

  4. Chatlani N, Soraghan JJ (2010) Local binary patterns for 1-D signal processing. In: 18th European signal processing conference (EUSIPCO-2010), pp 95–99

  5. Dipietro L, Sabatini AM, Dario P (2003) Artificial neural network model of the mapping between electromyographic activation and trajectory patterns in free-arm movements. Med Biol Eng Comput 41(2):124–132. doi:10.1007/BF02344879

    Article  CAS  PubMed  Google Scholar 

  6. Eban E, Rothschild G, Mizrahi A, Nelken I, Elidan G (2013). Dynamic copula networks for modeling real-valued time series. In: Proceedings of the sixteenth international conference on artificial intelligence and statistics, pp 247–255

  7. Englehart K, Hudgins B, Parker P, Stevenson M (1998) Time-frequency representation for classification of the transient myoelectric signal. In: Proceedings of the 20th annual international conference of the ZEEE Engineering in medicine and biology society, vol 20, no (5), pp 2627–2630. doi: 10.1109/iembs.1998.745109

  8. Ertugrul OF, Tagluk ME, Kaya Y, Tekin R (2013) EMG signal classification by extreme learning machine. In: 21st signal processing and communications applications conference (SIU), pp 1–4. doi: 10.1109/siu.2013.6531269

  9. Fraiwan L, Lweesy K, Al-Nemrawi A, Addabass S, Saifan R (2011) Voiceless Arabic vowels recognition using facial EMG. Med Biol Eng Comput 49(7):811–818. doi:10.1007/s11517-011-0751-1

    Article  PubMed  Google Scholar 

  10. Frank A, Asuncion A (2010) UCI machine learning repository [http://archive.ics.uci.edu/ml]. University of California, School of Information and Computer Science, Irvine

  11. Fratini A, Bifulco P, Romano M, Clemente F, Cesarelli M (2014) Simulation of surface EMG for the analysis of muscle activity during whole body vibratory stimulation. Comput Methods Progr Biomed 113:314–322. doi:10.1016/j.cmpb.2013.10.009

    Article  Google Scholar 

  12. Gao Z, Lei J, Song Q, Yu Y, Ge Y (2006) Research on the surface EMG signal for human body motion recognizing based on arm wrestling robot. In: International conference on information acquisition, China, pp 1269–1273. doi: 10.1109/icia.2006.305932

  13. Gazzoni M, Farina D, Merletti R (2004) A new method for the extraction and classification of single motor unit action potentials from surface EMG signals. J Neurosci Methods 136:165–177. doi:10.1016/j.jneumeth.2004.01.002

    Article  PubMed  Google Scholar 

  14. Heikkila M, Pietikainen M, Schmid C (2009) Description of interest regions with local binary patterns. Pattern Recognit 42:425–436. doi:10.1016/j.patcog.2008.08.014

    Article  Google Scholar 

  15. Hu X, Wang Z, Ren X (2005) Classification of surface EMG signal using relative wavelet packet energy. Comput Methods Progr Biomed 79:189–195. doi:10.1016/j.cmpb.2005.04.001

    Article  Google Scholar 

  16. Jiang N, Muceli S, Graimann B, Farina D (2013) Effect of arm position on the prediction of kinematics from EMG in amputees. Med Biol Eng Comput 51(1–2):143–151. doi:10.1007/s11517-012-0979-4

    Article  PubMed  Google Scholar 

  17. Katsis CD, Goletsis Y, Likas A, Fotiadis DI, Sarmas I (2006) A novel method for automated EMG decomposition and MUAP classification. Artif Intell Med 37(1):55–64. doi:10.1016/j.artmed.2005.09.002

    Article  CAS  PubMed  Google Scholar 

  18. Kaya Y, Uyar M, Tekin R, Yıldırım S (2014) 1D-local binary pattern based feature extraction for classification of epileptic EEG signals. Appl Math Comput 243:209–219. doi:10.1016/j.amc.2014.05.128

    Google Scholar 

  19. Liu J, Li X, Li G, Zhou P (2014) EMG feature assessment for myoelectric pattern recognition and channel selection: a study with incomplete spinal cord injury. Med Eng Phys 36(7):975–980. doi:10.1016/j.medengphy.2014.04.003

    Article  PubMed  PubMed Central  Google Scholar 

  20. McCool P, Chatlani N, Petropoulakis L, Soraghan JJ, Menon R, Lakany H (2012) 1-D local binary patterns for onset detection of myoelectric signals. In: IEEE proceedings of the 20th European signal processing conference (EUSIPCO), pp 499–503

  21. McCool P, Chatlani N, Petropoulakis L, Soraghan JJ, Menon R, Lakany H (2014) Lower arm electromyography (EMG) activity detection using local binary patterns. IEEE Trans Neural Syst Rehabil Eng 22(5):1003–1012. doi:10.1109/TNSRE.2014.2320362

    Article  PubMed  Google Scholar 

  22. Nanni L, Lumini A, Brahnam S (2012) Survey on LBP based texture descriptors for image classification. Expert Syst Appl 39:3634–3641. doi:10.1016/j.eswa.2011.09.054

    Article  Google Scholar 

  23. Nava R, Cristobal G, Escalante-Ramirez B (2012) A comprehensive study of texture analysis based on local binary patterns. Int Soc Opt Photonics. In: Proceedings of SPIE, p 84360E

  24. Nazarpour K, Sharafat AR, Firoozabadi SMP (2005) Surface EMG signal classification using a selective mix of higher order statistics. In: 27th annual conference engineering in medicine and biology, China, pp 4208–4211. doi: 10.1109/iembs.2005.1615392

  25. Ojala T, Pietikäinen M, Harwood D (1994) Performance evaluation of texture measures with classification based on Kullback discrimination of distributions. In: Proceedings of the 12th IAPR international conference on pattern recognition, vol 1, pp 582–585. doi: 10.1109/ICPR.1994.576366

  26. Ojala T, Pietikäinen M, Harwood D (1996) A comparative study of texture measures with classification based on feature distributions. Pattern Recognit 29:51–59. doi:10.1016/0031-3203(95)00067-4

    Article  Google Scholar 

  27. Ojala T, Pietikäinen M, Mäenpää TT (2002) Multiresolution gray-scale and rotation invariant texture classification with local binary pattern. IEEE Trans Pattern Anal Mach Intell 24(7):971–987. doi:10.1109/TPAMI.2002.1017623

    Article  Google Scholar 

  28. Phinyomark A, Hirunviriya S, Limsakul C, Phukpattaranont P (2010) Evaluation of EMG feature extraction for hand movement recognition based on Euclidean distance and standard deviation. In: IEEE 2010 international conference on electrical engineering/electronics computer telecommunications and information technology (ECTI-CON), pp 856–860

  29. Phinyomark A, Phukpattaranont P, Limsakul C (2012) Feature reduction and selection for EMG signal classification. Expert Syst Appl 39:7420–7431. doi:10.1016/j.eswa.2012.01.102

    Article  Google Scholar 

  30. Phinyomark A, Quaine F, Charbonnier S, Serviere C, Tarpin-Bernard F, Laurillau Y (2013) EMG feature evaluation for improving myoelectric pattern recognition robustness. Expert Syst Appl 40:4832–4840. doi:10.1016/j.eswa.2013.02.023

    Article  Google Scholar 

  31. Ren X, Hu X, Wang Z, Yan Z (2006) MUAP extraction and classification based on wavelet transform and ICA for EMG decomposition. Med Biol Eng Comput 44(5):371–382. doi:10.1007/s11517-006-0051-3

    Article  PubMed  Google Scholar 

  32. Rissanen SM, Kankaanpää M, Meigal A, Tarvainen MP, Nuutinen J, Tarkka IM, Karjalainen PA (2008) Surface EMG and acceleration signals in Parkinson’s disease: feature extraction and cluster analysis. Med Biol Eng Comput 46(9):849–858. doi:10.1007/s11517-008-0369-0

    Article  PubMed  Google Scholar 

  33. Sezgin N (2012) Analysis of EMG signals in aggressive and normal activities by using higher-order spectra. Sci World J. doi:10.1100/2012/478952

    Google Scholar 

  34. Shi J, Cai Y, Zhu J, Zhong J, Wang F (2013) SEMG-based hand motion recognition using cumulative residual entropy and extreme learning machine. Med Biol Eng Comput 51(4):417–427. doi:10.1007/s11517-012-1010-9

    Article  PubMed  Google Scholar 

  35. Subasi A (2012) Classification of EMG signals using combined features and soft computing techniques. Appl Soft Comput 12:2188–2198. doi:10.1016/j.asoc.2012.03.035

    Article  Google Scholar 

  36. Subasi A (2013) Classification of EMG signals using PSO optimized SVM for diagnosis of neuromuscular disorders. Comput Biol Med 43:576–586. doi:10.1016/j.compbiomed.2013.01.020

    Article  PubMed  Google Scholar 

  37. Xie HB, Guo T, Bai S, Dokos S (2014) Hybrid soft computing systems for electromyographic signals analysis: a review. Biomed Eng Online 13(1):8. doi:10.1186/1475-925X-13-8

    Article  PubMed  PubMed Central  Google Scholar 

  38. Yousefi J, Hamilton-Wright A (2014) Characterizing EMG data using machine-learning tools. Comput Biol Med 51:1–13. doi:10.1016/j.compbiomed.2014.04.018

    Article  PubMed  Google Scholar 

  39. Zhang J, Tan T (2002) Brief review of invariant texture analysis methods. Pattern Recognit 35:735–747. doi:10.1016/S0031-3203(01)00074-7

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ömer Faruk Ertuğrul.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ertuğrul, Ö.F., Kaya, Y. & Tekin, R. A novel approach for SEMG signal classification with adaptive local binary patterns. Med Biol Eng Comput 54, 1137–1146 (2016). https://doi.org/10.1007/s11517-015-1443-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11517-015-1443-z

Keywords

Navigation