Skip to main content
Log in

Biomechanical performance of retrograde nail for supracondylar fractures stabilization

  • Original Article
  • Published:
Medical & Biological Engineering & Computing Aims and scope Submit manuscript

Abstract

The study compared the biomechanical performance of retrograde nail used to stabilize supracondylar fracture (three different levels) by means of finite element analysis. Three different nail lengths (200, 260, and 300 mm) of stainless steel and titanium nails were under consideration. Intact femur model was reconstructed from Digital Imaging and Communications in Medicine images of Thai cadaveric femur scanned by computed tomography spiral scanner, whereas geometry of retrograde nail was reconstructed with the data obtained from three-dimensional laser scanner. The retrograde nail was virtually attached to the femur before nodes and elements were generated for finite element model. The finite element models were analyzed in two stages, the early stage of fracture healing and the stage after fracture healing. The finding indicated that purchasing proximal locking screw in the bowing region of the femur may be at risk due to the high stresses at the implant and bone. There were no differences in stress level, elastic strain at a fracture gap, and bone stress between stainless steel and titanium implant. Since the intramedullary canal requires reaming to accommodate the retrograde nail, the length of retrograde nail should be as long as necessary. However, in case that the retrograde nail can be accommodated into the intramedullary canal without reaming, the longer retrograde nail can be used.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Behrens BA, Nolte I, Wefstaedt P, Stukenborg-Colsman C, Bouguecha A (2009) Numerical investigations on the strain-adaptive bone remodelling in the periprosthetic femur: influence of the boundary conditions. Biomed Eng Online 8(7):1–9

    Google Scholar 

  2. Chantarapanich N, Mahaisavariya B, Siribodhi P, Sitthiseripratip K (2011) Geometric mismatch analysis of retrograde nail in the Asian femur. Surg Radiol Anat 33:755–761

    Article  PubMed  Google Scholar 

  3. Chen WP, Tai CL, Shih CH, Hsieh PH, Leou MC, Lee MS (2004) Selection of fixation devices in proximal femur rotational osteotomy: clinical complications and finite element analysis. Clin Biomech 19(3):255–262

    Article  Google Scholar 

  4. Chen SH, Yu TC, Chang CH, Lu YC (2008) Biomechanical analysis of retrograde intramedullary nail fixation in distal femoral fractures. Knee 15:384–389

    Article  PubMed  Google Scholar 

  5. Chen SH, Chiang MC, Hung CH, Lin SC, Chang HW (2014) Finite element comparison of retrograde intramedullary nailing and locking plate fixation with/without an intramedullary allograft for distal femur fracture following total knee arthroplasty. Knee 21:224–231

    Article  PubMed  Google Scholar 

  6. Cheung G, Zalzal P, Bhandari M, Spelt JK, Papini M (2004) Finite element analysis of a femoral retrograde intramedullary nail subject to gait loading. Med Eng Phys 26:93–108

    Article  CAS  PubMed  Google Scholar 

  7. Claes LE, Heigele CA (1999) Magnitudes of local stress and strain along bony surfaces predict the course and type of fracture healing. J Biomech 32:255–266

    Article  CAS  PubMed  Google Scholar 

  8. Currey JD (2004) Tensile yield in compact bone is determined by strain, post-yield behaviour by mineral content. J Biomech 37:549–556

    Article  PubMed  Google Scholar 

  9. Eberle S, Gerber C, von Oldenburg G, Hungerer S, Augat P (2009) Type of hip fracture determines load share in intramedullary osteosynthesis. Clin Orthop Relat Res 467:1972–1980

    Article  PubMed  PubMed Central  Google Scholar 

  10. Ehlinger M, Ducrot G, Adam P, Bonnomet F (2013) Distal femur fractures. Surgical techniques and a review of the literature. Orthop Traumatol Surg Res 99:353–360

    Article  CAS  PubMed  Google Scholar 

  11. Gao K, Gao W, Huang J, Li H, Li F, Tao J, Wang Q (2013) Retrograde nailing versus locked plating of extra-articular distal femoral fractures: Comparison of 36 cases. Med Princ Pract 22:161–166

    Article  PubMed  Google Scholar 

  12. Gynning JB, Hansen D (1999) Treatment of distal femoral fractures with intramedullary supracondylar nails in elderly patients. Injury 30:43–46

    Article  CAS  PubMed  Google Scholar 

  13. Handolin L, Pajarinen J, Lindahl J, Hirvensalo E (2004) Retrograde intramedullary nailing in distal femoral fractures—results in a series of 46 consecutive operations. Injury 35:517–522

    Article  PubMed  Google Scholar 

  14. Helgason B, Pálsson H, Rúnarsson TP, Frossard L, Viceconti M (2009) Risk of failure during gait for direct skeletal attachment of a femoral prosthesis: a finite element study. Med Eng Phys 31:595–600

    Article  PubMed  Google Scholar 

  15. Heller MO, Bergmann G, Kassi JP, Claes L, Haas NP, Duda GN (2005) Determination of muscle loading at the hip joint for use in pre-clinical testing. J Biomech 38:1155–1163

    Article  CAS  PubMed  Google Scholar 

  16. Hipp JA, McBroom RJ, Cheal EJ, Hayes WC (1989) Structural consequences of endosteal metastatic lesions in long bones. J Orthop Res 7:828–837

    Article  CAS  PubMed  Google Scholar 

  17. Hrubina M, Horák Z, Bartoška R, Navrátil L, Rosina J (2013) Computational modeling in the prediction of dynamic hip screw failure in proximal femoral fractures. J Appl Biomed 11(3):143–151

    Article  Google Scholar 

  18. Kim J, Kang SB, Nam K, Rhee SH, Won JW, Han HS (2012) Retrograde intramedullary nailing for distal femur fracture with osteoporosis. Clin Orthop Surg 4:307–312

    Article  PubMed  PubMed Central  Google Scholar 

  19. Koval KJ, Sala DA, Kummer FJ, Zuckerman JD (1998) Postoperative weight-bearing after a fracture of the femoral neck or an intertrochanteric fracture. J Bone Joint Surg Am 80:352–356

    CAS  PubMed  Google Scholar 

  20. Kumar A, Jasani V, Butt MS (2000) Management of distal femoral fractures in elderly patients using retrograde titanium supracondylar nails. Injury 31:169–173

    Article  CAS  PubMed  Google Scholar 

  21. Martinet O, Cordey J, Harder Y, Maier A, Bühler M, Barraud GE (2000) The epidemiology of fractures of the distal femur. Injury 31:62–63

    Article  Google Scholar 

  22. Martínez AA, Pérez JM, Herrera A, Lallana JJ (2000) Unusual complications of supracondylar nails. Injury 31:811–813

    Article  PubMed  Google Scholar 

  23. Melvin JS, Smith JL, Sims SH, Patt JC (2012) The use of an interference fit retrograde nail as an adjunct to plate fixation of a complex Vancouver B1 periprosthetic femoral fracture. Injury 43:1779–1782

    Article  PubMed  Google Scholar 

  24. Metikala S, Mohammed R (2011) Closed retrograde retrieval of the distal broken segment of femoral cannulated intramedullary nail using a ball-tipped guide wire. Indian J Orthop 45:347–350

    Article  PubMed  PubMed Central  Google Scholar 

  25. Mischler S, Pax G (2002) Tribological behavior of titanium sliding against bone. Eur Cell Mater 3:28–29

    Google Scholar 

  26. Ostrum RF, Maurer JP (2009) Distal third femur fractures treated with retrograde femoral nailing and blocking screws. J Orthop Trauma 23:681–684

    Article  PubMed  Google Scholar 

  27. Schandelmaier P, Partenheimer A, Koenemann B, Grün OA, Krettek C (2001) Distal femoral fractures and LISS stabilization. Injury 32:SC55–SC63

    Article  PubMed  Google Scholar 

  28. Shih KS, Tseng CS, Lee CC, Lin SC (2008) Influence of muscular contractions on the stress analysis of distal femoral interlocking nailing. Clin Biomech 23:38–44

    Article  Google Scholar 

  29. Singh SK, El-Gendy KA, Chikkamuniyappa C, Houshian S (2006) The retrograde nail for distal femoral fractures in the elderly: high failure rate of the condyle screw and nut. Injury 37:1004–1010

    Article  CAS  PubMed  Google Scholar 

  30. Sitthiseripratip K, Van Oosterwyck H, Vander Sloten J, Mahaisavariya B, Bohez ELJ, Suwanprateeb J, Van Audekercke R, Oris P (2003) Finite element study of trochanteric gamma nail for trochanteric fracture. Med Eng Phys 25:99–106

    Article  CAS  PubMed  Google Scholar 

  31. Speirs AD, Heller MO, Duda GN, Taylor WR (2007) Physiologically based boundary conditions in finite element modelling. J Biomech 40:2318–2323

    Article  PubMed  Google Scholar 

  32. Suresh SS (2013) Exchange nailing and percutaneous bone grafting for management of aseptic non-union of the femur. Hard Tissue 2(1):8

    Article  Google Scholar 

  33. Watanabe Y, Takai S, Yamashita F, Kusakabe T, Kim W, Hirasawa Y (2002) Second-generation intramedullary supracondylar nail for distal femoral fractures. Int Orthop 26:85–88

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Wei HW, Sun SS, Jao SHE, Yeh CR, Cheng CK (2005) The influence of mechanical properties of subchondral plate, femoral head and neck on dynamic stress distribution of the articular cartilage. Med Eng Phys 27:295–304

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the Department of Anatomy, Faculty of Medicine, Siriraj Hospital, Mahidol University, Thailand, for their kindness support of the cadaveric bone specimen.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kriskrai Sitthiseripratip.

Ethics declarations

Conflict of interest

The authors declare that no benefits in any forms have been received or will be received from a commercial party related directly or indirectly to the subject of this article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chantarapanich, N., Sitthiseripratip, K., Mahaisavariya, B. et al. Biomechanical performance of retrograde nail for supracondylar fractures stabilization. Med Biol Eng Comput 54, 939–952 (2016). https://doi.org/10.1007/s11517-016-1466-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11517-016-1466-0

Keywords

Navigation