Skip to main content

Advertisement

Log in

Antioxidative/oxidative effects and retarding osteoconductivity of ciprofloxacin-loaded porous polyvinyl alcohol/bioactive glass hybrid

  • Original Article
  • Published:
Medical & Biological Engineering & Computing Aims and scope Submit manuscript

Abstract

This study investigated the effect of bioglass (melting)-polyvinyl alcohol (BG (M)-PVA) and bioglass (melting)-polyvinyl alcohol-20 %ciprofloxacin (BG(M)-PVA-20Cip) in improving antioxidant activity and regenerating bone capacity. These composites were implanted in femoral condyles of ovariectomized Wistar rats and compared to that of controls groups. After the different period of implantation (15, 30, 60 and 90 days), the treatment of ovariectomized rats with BG(M)-PVA-20Cip showed a significantly higher malondialdehyde concentration when compared to that of BG(M)-PVA group. The superoxide dismutase, glutathione peroxidase and catalase in BG(M)-PVA-20Cip group showed significantly lower activities when compared to those in BG(M)-PVA group. So, BG(M)-PVA is more tolerated by organism than BG(M)-PVA-20Cip. Moreover, the alkaline phosphatase and acid phosphatase activities showed an excellent osteoinductive property of BG (M)-PVA. This property decreased with the presence of ciprofloxacin which is confirmed by histopathological analysis. Several physicochemical techniques showed a rapid reduction in Si and Na in one hand and an accelerator rise in Ca and P ions concentrations in other hand in BG(M)-PVA than in the BG(M)-PVA-20Cip. Therefore, the incorporation of ciprofloxacin in BG(M)-PVA is characterized by a prooxidant effect in oxidant–antioxidant balance at the beginning of treatment and a retard effect of formation of apatitic phase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Aebi H (1984) Catalase in vitro. Methods Enzymol 105:121–126

    Article  CAS  PubMed  Google Scholar 

  2. Afolabo OK, Oyewo EB (2014) Effects of ciprofloxacin and levofloxacin administration on some oxidative stress markers in the rat. World Acad Sci Eng Technol Int J Biol Food Vet Agric Eng 8:72–76

    Google Scholar 

  3. Badraoui R, Ben-Nasr H, Amamou S et al (2014) Walker 256/B malignant breast cancer cells disrupt osteoclast cytomorphometry and activity in rats: modulation by α-tocopherol acetate. Pathol Res Pract 210:135–141. doi:10.1016/j.prp.2013.11.002

    Article  CAS  PubMed  Google Scholar 

  4. Becerra MC, Eraso AJ, Albesa I (2003) Comparison of oxidative stress induced by ciprofloxacin and pyoverdin in bacteria and in leukocytes to evaluate toxicity. Lumin J Biol Chem Lumin 18:334–340. doi:10.1002/bio.742

    Article  CAS  Google Scholar 

  5. Beyer WF, Fridovich I (1987) Assaying for superoxide dismutase activity: some large consequences of minor changes in conditions. Anal Biochem 161:559–566

    Article  CAS  PubMed  Google Scholar 

  6. Bourges J-L, Touchard E, Kowalczuk L et al (2007) Drug delivery systems for intraocular applications. J Fr Ophtalmol 30:1070–1088

    Article  PubMed  Google Scholar 

  7. Castro C, Sánchez E, Delgado A et al (2003) Ciprofloxacin implants for bone infection. In vitro–in vivo characterization. J Controlled Release 93:341–354. doi:10.1016/j.jconrel.2003.09.004

    Article  CAS  Google Scholar 

  8. Castro C, Evora C, Baro M et al (2005) Two-month ciprofloxacin implants for multibacterial bone infections. Eur J Pharm Biopharm 60:401–406. doi:10.1016/j.ejpb.2005.02.005

    Article  CAS  PubMed  Google Scholar 

  9. Danckwerts M, Fassihi A (1991) Implantable controlled release drug delivery systems: a review. Drug Dev Ind Pharm 17:1465–1502. doi:10.3109/03639049109026629

    Article  CAS  Google Scholar 

  10. Dash AK, Cudworth GC (1998) Therapeutic applications of implantable drug delivery systems. J Pharmacol Toxicol Methods 40:1–12

    Article  CAS  PubMed  Google Scholar 

  11. Dietrich E, Oudadesse H, Lucas-Girot A, Mami M (2009) In vitro bioactivity of melt-derived glass 46S6 doped with magnesium. J Biomed Mater Res A 88:1087–1096. doi:10.1002/jbm.a.31901

    Article  PubMed  Google Scholar 

  12. Draper HH, Hadley M (1990) Malondialdehyde determination as index of lipid peroxidation. Methods Enzymol 186:421–431

    Article  CAS  PubMed  Google Scholar 

  13. Dutta TK, Badhe B (1999) Ciprofloxacin-induced bone marrow depression. Postgrad Med J 75:571–573

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Gao C, Gao Q, Li Y et al (2012) Preparation and in vitro characterization of electrospun PVA scaffolds coated with bioactive glass for bone regeneration. J Biomed Mater Res A 100:1324–1334. doi:10.1002/jbm.a.34072

    Article  PubMed  Google Scholar 

  15. Goodman SB, Yao Z, Keeney M, Yang F (2013) The future of biologic coatings for orthopaedic implants. Biomaterials 34:3174–3183. doi:10.1016/j.biomaterials.2013.01.074

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Greenspan DC, Hench LL (1976) Chemical and mechanical behavior of bioglass-coated alumina. J Biomed Mater Res 10:503–509. doi:10.1002/jbm.820100405

    Article  CAS  PubMed  Google Scholar 

  17. Gürbay A, Garrel C, Osman M et al (2002) Cytotoxicity in ciprofloxacin-treated human fibroblast cells and protection by vitamin E. Hum Exp Toxicol 21:635–641

    Article  PubMed  Google Scholar 

  18. Halawa AM (2010) Effect of ciprofloxacin on the articular cartilage and epiphyseal growth plate cartilage in the growing albino rats and the possible protective role of vitamin E (α –Tocopherol): a histological and morphometric study. Egypt J Histol 3:569–582

    Google Scholar 

  19. Hench LL (2006) The story of Bioglass®. J Mater Sci Mater Med 17:967–978. doi:10.1007/s10856-006-0432-z

    Article  CAS  PubMed  Google Scholar 

  20. Huang J, Best SM (2007) 1—Ceramic biomaterials. In: Boccaccini AR, Gough JE (eds) Tissue engineering using ceramics and polymers. Woodhead Publishing, Sawston, pp 3–31

    Chapter  Google Scholar 

  21. Huddleston PM, Steckelberg JM, Hanssen AD et al (2000) Ciprofloxacin inhibition of experimental fracture healing. J Bone Joint Surg Am 82:161–173

    Article  CAS  PubMed  Google Scholar 

  22. Izquierdo-Barba I, Colilla M, Vallet-Regí M (2008) Nanostructured mesoporous silicas for bone tissue regeneration. J Nanomater 2008:e106970. doi:10.1155/2008/106970

    Article  Google Scholar 

  23. Jebahi S, Oudadesse H, El Feki H et al (2012) Antioxidative/oxidative effects of strontium-doped bioactive glass as bone graft. In vivo assays in ovariectomised rats. J Appl Biomed 10:195–209. doi:10.2478/v10136-012-0009-8

    Article  CAS  Google Scholar 

  24. Jones JR (2013) Review of bioactive glass: from Hench to hybrids. Acta Biomater 9:4457–4486. doi:10.1016/j.actbio.2012.08.023

    Article  CAS  PubMed  Google Scholar 

  25. Li W, Ding Y, Rai R et al (2014) Preparation and characterization of PHBV microsphere/45S5 bioactive glass composite scaffolds with vancomycin releasing function. Mater Sci Eng C Mater Biol Appl 41:320–328. doi:10.1016/j.msec.2014.04.052

    Article  CAS  PubMed  Google Scholar 

  26. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275

    CAS  PubMed  Google Scholar 

  27. Mabrouk M, Mostapaha AA, Oudadesse H et al (2013) Fabrication, characterization and drug release of ciprofloxacin loaded porous polyvinyl alcohol/bioactive glass scaffold for controlled drug delivery. Bioceram Dev Appl S:1–4. doi:10.4172/2090-5025.S1-009

  28. Mabrouk M, Mostafa AA, Oudadesse H et al (2014) Effect of ciprofloxacin incorporation in PVA and PVA bioactive glass composite scaffolds. Ceram Int 40:4833–4845. doi:10.1016/j.ceramint.2013.09.033

    Article  CAS  Google Scholar 

  29. Meissner A, Borner K (1993) Concentration of ciprofloxacin in bone tissue. Aktuelle Traumatol 23:80–84

    CAS  PubMed  Google Scholar 

  30. Mouriño V, Cattalini JP, Li W et al (2014) 22—Multifunctional scaffolds for bone tissue engineering and in situ drug delivery. In: Boccaccini AR, Ma PX (eds) Tissue engineering using ceramics and polymers, 2nd ed. Woodhead Publishing, Sawston, pp 648–675

  31. Nollet E, Van Craenenbroeck EM, Martinet W et al (2015) Bone matrix vesicle-bound alkaline phosphatase for the assessment of peripheral blood admixture to human bone marrow aspirates. Clin Chim Acta 446:253–260. doi:10.1016/j.cca.2015.04.013

    Article  CAS  PubMed  Google Scholar 

  32. Otsuka M, Matsuda Y, Yu D et al (1990) A novel skeletal drug delivery system for anti-bacterial drugs using self-setting hydroxyapatite cement. Chem Pharm Bull (Tokyo) 38:3500–3502

    Article  CAS  Google Scholar 

  33. Paglia DE, Valentine WN (1967) Studies on the quantitative and qualitative characterization of erythrocyte glutathione peroxidase. J Lab Clin Med 70:158–169

    CAS  PubMed  Google Scholar 

  34. Perry AC, Prpa B, Rouse MS et al (2003) Levofloxacin and trovafloxacin inhibition of experimental fracture-healing. Clin Orthop 95–100. doi:10.1097/01.blo.0000087322.60612.14

  35. Pham HH, Luo P, Génin F, Dash AK (2002) Synthesis and characterization of hydroxyapatite-ciprofloxacin delivery systems by precipitation and spray drying technique. AAPS PharmSciTech 3:1–9. doi:10.1208/pt030101

    Article  PubMed Central  Google Scholar 

  36. Pon-On W, Charoenphandhu N, Teerapornpuntakit J et al (2014) Mechanical properties, biological activity and protein controlled release by poly(vinyl alcohol)-bioglass/chitosan-collagen composite scaffolds: a bone tissue engineering applications. Mater Sci Eng C Mater Biol Appl 38:63–72. doi:10.1016/j.msec.2014.01.040

    Article  CAS  PubMed  Google Scholar 

  37. Rahaman MN (2014) 3—Bioactive ceramics and glasses for tissue engineering. In: Boccaccini AR, Ma PX (eds) Tissue engineering using ceramics and polymers, 2nd ed. Woodhead Publishing, Sawston, pp 67–114

  38. Raj MS, Arkin VH, Adalarasu Jagannath M (2013) Nanocomposites based on polymer and hydroxyapatite for drug delivery application. Indian J Sci Technol 6:4653–4658

    CAS  Google Scholar 

  39. Rathbone CR, Cross JD, Brown KV et al (2011) Effect of various concentrations of antibiotics on osteogenic cell viability and activity. J Orthop Res Off Publ Orthop Res Soc 29:1070–1074. doi:10.1002/jor.21343

    Article  CAS  Google Scholar 

  40. Rawi S (2011) Effect of ciprofloxacin and levofloxacin on some oxidative stress parameters in brain regions of Male Albino Rats. Afr J Pharm, Pharmacol

    Google Scholar 

  41. Roohani-Esfahani SI, Nouri-Khorasani S, Lu ZF et al (2011) Effects of bioactive glass nanoparticles on the mechanical and biological behavior of composite coated scaffolds. Acta Biomater 7:1307–1318. doi:10.1016/j.actbio.2010.10.015

    Article  CAS  PubMed  Google Scholar 

  42. Schmalz G, Bindslev DA (2008) Biocompatibility of dental materials. Springer Science & Business Media, New York

    Google Scholar 

  43. Stĕpán JJ, Pospíchal J, Presl J, Pacovský V (1987) Bone loss and biochemical indices of bone remodeling in surgically induced postmenopausal women. Bone 8:279–284

    Article  PubMed  Google Scholar 

  44. Takizawa T, Hashimoto K, Minami T et al (1999) The comparative arthropathy of fluoroquinolones in dogs. Hum Exp Toxicol 18:392–399

    Article  CAS  PubMed  Google Scholar 

  45. Talla V, Veerareddy P (2011) Oxidative stress induced by fluoroquinolones on treatment for complicated urinary tract infections in Indian patients. J Young Pharm JYP 3:304–309. doi:10.4103/0975-1483.90242

    Article  CAS  PubMed  Google Scholar 

  46. Tuncay I, Ozbek H, Köşem M, Unal O (2005) A comparison of effects of fluoroquinolones on fracture healing (an experimental study in rats). Ulus Travma Ve Acil Cerrahi Derg Turk J Trauma Emerg Surg TJTES 11:17–22

    Google Scholar 

  47. Walter I, Egerbacher M, Wolfesberger B, Seiberl G (1998) Confocal laser scanning microscopy of chondrocytes in vitro: cytoskeletal changes after quinolone treatment. Scanning 20:511–515

    Article  CAS  PubMed  Google Scholar 

  48. Yu D, Wong J, Matsuda Y et al (1992) Self-setting hydroxyapatite cement: a novel skeletal drug-delivery system for antibiotics. J Pharm Sci 81:529–531

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This research was supported by the Tunisian Ministry of Higher Education and Scientific Research and the Tunisian Ministry of Public Health, University of Rennes 1 and CNRS France, CNRST, FINCOME Rabat Maroc.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hafed Elfeki.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Boulila, S., Oudadesse, H., Badraoui, R. et al. Antioxidative/oxidative effects and retarding osteoconductivity of ciprofloxacin-loaded porous polyvinyl alcohol/bioactive glass hybrid. Med Biol Eng Comput 55, 17–32 (2017). https://doi.org/10.1007/s11517-016-1473-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11517-016-1473-1

Keywords

Navigation