Skip to main content
Log in

A novel technology: microfluidic devices for microbubble ultrasound contrast agent generation

  • Review Article
  • Published:
Medical & Biological Engineering & Computing Aims and scope Submit manuscript

Abstract

Microbubbles are used as ultrasound contrast agents, which enhance ultrasound imaging techniques. In addition, microbubbles currently show promise in disease therapeutics. Microfluidic devices have increased the ability to produce microbubbles with precise size, and high monodispersity compared to microbubbles created using traditional methods. This paper will review several variations in microfluidic device structures used to produce microbubbles as ultrasound contrast agents. Microfluidic device structures include T-junction, and axisymmetric and asymmetric flow-focusing. These devices have made it possible to produce microbubbles that can enter the vascular space; these microbubbles must be less than 10 μm in diameter and have high monodispersity. For different demands of microbubbles production rate, asymmetric flow-focusing devices were divided into individual and integrated devices. In addition, asymmetric flow-focusing devices can produce double layer and multilayer microbubbles loaded with drug or biological components. Details on the mechanisms of both bubble formation and device structures are provided. Finally, microfluidically produced microbubble acoustic responses, microbubble stability, and microbubble use in ultrasound imaging are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Barbier V, Willaime H, Tabeling P et al (2006) Producing droplets in parallel microfluidic systems. Phys Rev E 74:046306

    Article  CAS  Google Scholar 

  2. Bardin D, Martz TD, Sheeran PS et al (2011) High-speed, clinical-scale microfluidic generation of stable phase-change droplets for gas embolotherapy. Lab Chip 11:3990–3998

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Bjerknes K, Dyrstad K, Smistad G et al (2000) Preparation of polymeric microcapsules: formulation studies. Drug Dev Ind Pharm 26:847–856

    Article  CAS  PubMed  Google Scholar 

  4. Cai XW, Yang F, Gu N (2012) Applications of magnetic microbubbles for theranostics. Theranostics 2:103–112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Castro-Hernandez E, Hoeve WV, Lohse D et al (2011) Microbubble generation in a co-flow device operated in a new regime. Lab Chip 11:2023–2029

    Article  CAS  PubMed  Google Scholar 

  6. Cavalieri F, Zhou M, Ashokkumar M (2010) The design of multifunctional microbubbles for ultrasound image-guided cancer therapy. Curr Top Med Chem 10:1198–1210

    Article  CAS  PubMed  Google Scholar 

  7. Cavalli R, Bisazza A, Lembo D (2013) Micro- and nanobubbles: a versatile non-viral platform for gene delivery. Int J Pharm 456:437–445

    Article  CAS  PubMed  Google Scholar 

  8. Chang S, Guo J, Sun J et al (2013) Targeted microbubbles for ultrasound mediated gene transfection and apoptosis induction in ovarian cancer cells. Ultrason Sonochem 20:171–179

    Article  CAS  PubMed  Google Scholar 

  9. Chen C, Zhu Y, Leech PW et al (2009) Production of monodispersed micron-sized bubbles at high rates in a microfluidic device. Appl Phys Lett 95:144101

    Article  CAS  Google Scholar 

  10. Chen H, Li J, Wan J et al (2013) Gas-core triple emulsions for ultrasound triggered release. Soft Matter 9:38–42

    Article  CAS  Google Scholar 

  11. Chen H, Li J, Zhou W et al (2014) Sonication-microfluidics for fabrication of nanoparticle-stabilized microbubbles. Langmuir 30:4262–4266

    Article  CAS  PubMed  Google Scholar 

  12. Chen JL, Dhanaliwala AH, Wang S et al (2011) Parallel output, liquid flooded flow-focusing microfluidic device for generating monodisperse microbubbles within a catheter. IEEE Ultrason Symp 2011:160–163

    Google Scholar 

  13. Chen JL, Dhanaliwala AH, Dixon AJ et al. (2013) Synthesis of albumin microbubbles using a microfluidic device for real-time imaging and therapeutics. IEEE Ultrason Symp 2013:1150–1153

    Google Scholar 

  14. Chen R, Dong PF, Xu JH et al (2012) Controllable microfluidic production of gas-in-oil-in-water emulsions for hollow microspheres with thin polymer shells. Lab Chip 12:3858

    Article  CAS  PubMed  Google Scholar 

  15. Cochran MC, Eisenbrey J, Ouma RO et al (2011) Doxorubicin and paclitaxel loaded microbubbles for ultrasound triggered drug delivery. Int J Pharm 414:161–170

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Cosgrove D (2006) Ultrasound contrast agents: an overview. Eur J Radiol 60:324–330

    Article  PubMed  Google Scholar 

  17. Cosgrove D, Harvey C (2009) Clinical uses of microbubbles in diagnosis and treatment. Med Biol Eng Comput 47:813–826

    Article  PubMed  Google Scholar 

  18. Cui Y, Campbell PA (2008) Towards monodisperse microbubble populations via microfluidic chip flow-focusing. IEEE Ultrason Symp 2008:1663–1666

    Google Scholar 

  19. Dhanaliwala AH, Chen JL, Wang S et al (2013) Liquid flooded flow-focusing microfluidic device for in situ generation of monodisperse microbubbles. Microfluid Nanofluidics 14:457–467

    Article  CAS  PubMed  Google Scholar 

  20. Dhanaliwala AH, Dixon AJ, Lin D et al (2015) In vivo imaging of microfluidic-produced microbubbles. Biomed Microdevices 17:23

    Article  PubMed  CAS  Google Scholar 

  21. Duarte AR, Unal B, Mano JF et al (2014) Microfluidic production of perfluorocarbon-alginate core-shell microparticles for ultrasound therapeutic applications. Langmuir 30:12391–12399

    Article  CAS  PubMed  Google Scholar 

  22. Edmond W (2008) Simultaneous generation of droplets with different dimensions in parallel integrated microfluidic droplet generators. Soft Matter 4:258–262

    Article  Google Scholar 

  23. Faez T, Emmer M, Kooiman K et al (2013) 20 years of ultrasound contrast agent modeling. IEEE Trans Ultrason Ferroelectr Freq Control 60:7–20

    Article  PubMed  Google Scholar 

  24. Farook U, Stride E, Edirisinghe M et al (2007) Microbubbling by co-axial electrohydrodynamic atomization. Med Biol Eng Comput 45:781–789

    Article  CAS  PubMed  Google Scholar 

  25. Farook U, Zhang H, Edirisinghe M et al (2007) Preparation of microbubble suspensions by co-axial electrohydrodynamic atomization. Med Eng Phys 29:749–754

    Article  CAS  PubMed  Google Scholar 

  26. Ferrara K, Pollard R, Borden M (2007) Ultrasound microbubble contrast agents: fundamentals and application to gene and drug delivery. Annu Rev Biomed Eng 9:415–447

    Article  CAS  PubMed  Google Scholar 

  27. Forsberg F, Merton DA, Liu JB et al (1998) clinical applications of ultrasonic contrasts. Ultrasonics 36:695–701

    Article  CAS  PubMed  Google Scholar 

  28. Fu T, Ma Y, Funfschilling D et al (2010) Squeezing-to-dripping transition for bubble formation in a microfluidic T-junction. Chem Eng Sci 65:3739–3748

    Article  CAS  Google Scholar 

  29. Gañán-Calvo AM, Gordillo JM (2001) Perfectly monodisperse microbubbling by capillary flow focusing. Phys Rev Lett 87:274501

    Article  PubMed  CAS  Google Scholar 

  30. Garstecki P, Fuerstman MJ, Stone HA et al (2006) Formation of droplets and bubbles in a microfluidic T-junction-scaling and mechanism of break-up. Lab Chip 6:437–446

    Article  CAS  PubMed  Google Scholar 

  31. Gong Y, Cabodi M, Porter TM (2009) Measurement of the attenuation coefficient for monodisperse populations of ultrasound contrast agents. Conf Proc IEEE Eng Med Biol Soc 2009:1964–1966

    PubMed  Google Scholar 

  32. Gong Y, Cabodi M, Porter T (2010) Pressure-dependent resonance frequency for lipid-coated microbubbles at low acoustic pressures. IEEE Ultrason Symp 2010:1932–1935

    Google Scholar 

  33. Gramiak R, Shah PM (1968) Echocardiography of the aortic root. Invest Radiol 3:356–366

    Article  CAS  PubMed  Google Scholar 

  34. Grinstaff MW, Suslick KS (1991) Air-filled proteinaceous microbubbles: synthesis of an echo-contrast agent. Proc Natl Acad Sci 88:7708–7710

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Hashimoto M, Shevkoplyas SS, Zasońska B et al (2008) Formation of bubbles and droplets in parallel, coupled flow-focusing geometries. Small 4:1795–1805

    Article  CAS  PubMed  Google Scholar 

  36. Herrada MA, Gañán-Calvo AM, Montanero JM (2013) Theoretical investigation of a technique to produce microbubbles by a microfluidic T junction. Phys Rev E 88:033027

    Article  CAS  Google Scholar 

  37. Hettiarachchi K, Lee AP (2009) Ultrasonic analysis of precision-engineered acoustically active lipospheres produced by microfluidic. IEEE Ultrason Symp 2009:1302–1305

    Google Scholar 

  38. Hettiarachchi K, Dayton PA, Lee AP (2008) Multimodal particles for biological detection and therapy. Twelfth international conference on miniaturized systems for chemistry and life sciences, pp 1765–1767

  39. Hettiarachchi K, Talu E, Longo ML et al (2007) On-chip generation of microbubbles as a practical technology for manufacturing contrast agents for ultrasonic imaging. Lab Chip 7:463–468

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Hettiarachchi K, Feingold S, Zhang S et al (2009) Controllable microfluidic synthesis of multiphase drug-carrying lipospheres for site-targeted therapy. Biotechnol Prog 25:938–945

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Jiang B, Gao C, Shen J (2006) Polylactide hollow spheres fabricated by interfacial polymerization in an oil-in-water emulsion system. Colloid Polym Sci 284:513–519

    Article  CAS  Google Scholar 

  42. Jiang C, Li X, Jin Q et al. (2010) Mass production of monodisperse ultrasound contrast microbubbles in integrated microfluidic devices. IEEE Bioinform Biomed Eng 2010:1–4

    Google Scholar 

  43. Jong N, Emmer M, Wamel A et al (2009) Ultrasonic characterization of ultrasound contrast agents. Med Biol Eng Comput 47:861–873

    Article  PubMed  PubMed Central  Google Scholar 

  44. Kang ST, Yeh CK (2012) Ultrasound microbubble contrast agents for diagnostic and therapeutic applications: current status and future design. Chang Gung Med J 35:125–138

    PubMed  Google Scholar 

  45. Kawakatsu T, Trägårdh G, Trägårdh C et al (2001) The effect of the hydrophobicity of microchannels and components in water and oil phases on droplet formation in microchannel water-in-oil emulsification. Colloids Surf A 179:29–37

    Article  CAS  Google Scholar 

  46. Kaya M, Feingold S, Hettiarachchi K et al (2010) Acoustic responses of monodisperse lipid encapsulated microbubble contrast agents produced by flow focusing. Bubble Sci Eng Technol 2:33–40

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Kendall MR, Bardin D, Shih R et al (2012) Scaled-up production of monodisperse, dual layer microbubbles using multi-array microfluidic module for medical imaging and drug delivery. Bubble Sci Eng Technol 4:12–20

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Kiessling F, Gaetjens J, Palmowski M (2011) Application of molecular ultrasound for imaging integrin expression. Theranostics 1:127

    Article  PubMed  PubMed Central  Google Scholar 

  49. Kiessling F, Fokong S, Koczera P et al (2012) Ultrasound microbubbles for molecular diagnosis, therapy, and theranostics. J Nucl Med 53:345–348

    Article  CAS  PubMed  Google Scholar 

  50. Kim C, Qin R, Xu JS et al (2010) Multifunctional microbubbles and nanobubbles for photoacoustic and ultrasound imaging. J Biomed Opt 15:010510

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  51. Klibanov AL (2009) Preparation of targeted microbubbles: ultrasound contrast agents for molecular imaging. Med Biol Eng Comput 47:875–882

    Article  PubMed  Google Scholar 

  52. Kukizaki M, Goto M (2007) Spontaneous formation behavior of uniform-sized microbubbles from Shirasu porous glass (SPG) membranes in the absence of water-phase flow. Colloids Surf A 296:174–181

    Article  CAS  Google Scholar 

  53. Lee M, Lee EY, Lee D et al (2015) Stabilization and fabrication of microbubbles: applications for medical purposes and functional materials. Soft Matter 11:2067–2079

    Article  CAS  PubMed  Google Scholar 

  54. Lee MH, Lee D (2010) Elastic instability of polymer-shelled bubbles formed from air-in-oil-in-water compound bubbles. Soft Matter 6:4326

    Article  CAS  Google Scholar 

  55. Lee MH, Prasad V, Lee D (2010) Microfluidic fabrication of stable nanoparticle-shelled bubbles. Langmuir 26:2227–2230

    Article  CAS  PubMed  Google Scholar 

  56. Lentacker I, Smedt SD, Sanders NN (2009) Drug loaded microbubble design for ultrasound triggered delivery. Soft Matter 5:2161

    Article  CAS  Google Scholar 

  57. Li EQ, Zhang JM, Thoroddsen ST (2014) Simple and inexpensive microfluidic devices for the generation of monodisperse multiple emulsions. J Micromech Microeng 24:015019

    Article  CAS  Google Scholar 

  58. Li S, Xiao C, Duan L et al. (2015) CT image-based computer-aided system for orbital prosthesis rehabilitation. Med Biol Eng Comput 53(10):943–950

    Article  PubMed  Google Scholar 

  59. Liang H, Blomley M (2003) The role of ultrasound in molecular imaging. Br J Radiol 76(Suppl 2):S140–S150

    Article  CAS  PubMed  Google Scholar 

  60. Lindner JR (2004) Microbubbles in medical imaging: current applications and future directions. Nat Rev Drug Discov 3:527–532

    Article  CAS  PubMed  Google Scholar 

  61. Liu Y, Miyoshi H, Nakamura M (2006) Encapsulated ultrasound microbubbles: therapeutic application in drug/gene delivery. J Control Release 114:89–99

    Article  CAS  PubMed  Google Scholar 

  62. Lorenceau E, Sang YYC, Höhler R et al (2006) A high rate flow-focusing foam generator. Phys Fluids 18:097103

    Article  CAS  Google Scholar 

  63. Macdonald CA, Sboros V, Gomatam J et al (2004) A numerical investigation of the resonance of gas-filled microbubbles: resonance dependence on acoustic pressure amplitude. Ultrasonics 43:113–122

    Article  CAS  PubMed  Google Scholar 

  64. Mahalingam S, Meinders MBJ, Edirisinghe M (2014) Formation, stability, and mechanical properties of bovine serum albumin stabilized air bubbles produced using coaxial electrohydrodynamic atomization. Langmuir 30:6694–6703

    Article  CAS  PubMed  Google Scholar 

  65. Martinez CJ (2009) Bubble generation in microfluidic devices. Bubble Sci Eng Technol 1:40–52

    Article  CAS  Google Scholar 

  66. Mulligan MK, Rothstein JP (2012) Scale-up and control of droplet production in coupled microfluidic flow-focusing geometries. Microfluid Nanofluidics 13:65–73

    Article  CAS  Google Scholar 

  67. Niu C, Wang Z, Lu G et al (2013) Doxorubicin loaded superparamagnetic PLGA-iron oxide multifunctional microbubbles for dual-mode US/MR imaging and therapy of metastasis in lymph nodes. Biomaterials 34:2307–2317

    Article  CAS  PubMed  Google Scholar 

  68. Nyborg WL (2001) Biological effects of ultrasound: development of safety guidelines. Part II: general review. Ultrasound Med Biol 27:301–333

    Article  CAS  PubMed  Google Scholar 

  69. Pancholi K, Stride E, Edirisinghe M (2008) Generation of microbubbles for diagnostic and therapeutic applications using a novel device. J Drug Target 16:494–501

    Article  CAS  PubMed  Google Scholar 

  70. Pancholi K, Stride E, Edirisinghe M (2008) Dynamics of bubble formation in highly viscous liquids. Langmuir 24:4388–4393

    Article  CAS  PubMed  Google Scholar 

  71. Pancholi K, Farook U, Moaleji R et al (2008) Novel methods for preparing phospholipid coated microbubbles. Eur Biophys J 37:515–520

    Article  CAS  PubMed  Google Scholar 

  72. Parhizkar M, Edirisinghe M, Stride E (2012) Effect of operating conditions and liquid physical properties on the size of monodisperse microbubbles produced in a capillary embedded T-junction device. Microfluid Nanofluidics 14:797–808

    Article  CAS  Google Scholar 

  73. Park JI, Tumarkin E, Kumacheva E (2010) Small, stable, and monodispersed bubbles encapsulated with biopolymers. Macromol Rapid Commun 31:222–227

    CAS  PubMed  Google Scholar 

  74. Park JI, Nie Z, Kumachev A et al (2010) A microfluidic route to small CO2microbubbles with narrow size distribution. Soft Matter 6:630–634

    Article  CAS  Google Scholar 

  75. Park JI, Saffari A, Kumar S et al (2010) Microfluidic synthesis of polymer and inorganic particulate materials. Annu Rev Mater Res 40:415–443

    Article  CAS  Google Scholar 

  76. Park JI, Nie Z, Kumachev A et al (2009) A microfluidic approach to chemically driven assembly of colloidal particles at gas–liquid interfaces. Angew Chem 121:5404–5408

    Article  Google Scholar 

  77. Park JI, Jagadeesan D, Williams R et al (2010) Microbubbles loaded with nanoparticles: a route to multiple imaging modalities. Acsnano 4:6579–6586

    CAS  Google Scholar 

  78. Park Y, Luce AC, Whitaker RD et al (2012) Tunable diacetylene polymerized shell microbubbles as ultrasound contrast agents. Langmuir 28:3766–3772

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Park YC, Zhang C, Mohamedi G et al (2014) Ultrasound-assisted drug delivery with targeted-microbubbles in blood vessels on a chip. Bioengineering conference, pp 1–2

  80. Peng H, Xu Z, Chen S et al (2015) An easily assembled double T-shape microfluidic devices for the preparation of submillimeter-sized polyacronitrile (PAN) microbubbles and polystyrene (PS) double emulsions. Colloids Surf A 468:271–279

    Article  CAS  Google Scholar 

  81. Peyman SA, Abou-Saleh RH, McLaughlan JR et al (2012) Expanding 3D geometry for enhanced on-chip microbubble production and single step formation of liposome modified microbubbles. Lab Chip 12:4544–4552

    Article  CAS  PubMed  Google Scholar 

  82. Seo M, Gorelikov I, Williams R et al (2010) Microfluidic assembly of monodisperse, nanoparticle-incorporated perfluorocarbon microbubbles for medical imaging and therapy. Langmuir 26:13855–13860

    Article  CAS  PubMed  Google Scholar 

  83. Shih CP, Chen HC, Chen HK et al (2013) Ultrasound-aided microbubbles facilitate the delivery of drugs to the inner ear via the round window membrane. J Control Release 167:167–174

    Article  CAS  PubMed  Google Scholar 

  84. Shih R, Bardin D, Martz TD et al (2013) Flow-focusing regimes for accelerated production of monodisperse drug-loadable microbubbles toward clinical-scale applications. Lab Chip 13:4816–4826

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Sousa LC, Castro CF, Antonio CC et al (2014) Toward hemodynamic diagnosis of carotid artery stenosis based on ultrasound image data and computational modeling. Med Biol Eng Comput 52:971–983

    Article  PubMed  Google Scholar 

  86. Streeter JE, Gessner R, Miles I et al (2010) Improving sensitivity in ultrasound molecular imaging by tailoring contrast agent size distribution: in vivo studies. NIH Public Access 9:87–95

    Google Scholar 

  87. Stride E, Edirisinghe M (2008) Novel microbubble preparation technologies. Soft Matter 4:2350–2359

    Article  CAS  Google Scholar 

  88. Stride E, Edirisinghe M (2009) Special issue on microbubbles: from contrast enhancement to cancer therapy. Med Biol Eng Comput 47:809–811

    Article  PubMed  Google Scholar 

  89. Stride E, Edirisinghe M (2009) Novel preparation techniques for controlling microbubble uniformity: a comparison. Med Biol Eng Comput 47:883–892

    Article  PubMed  Google Scholar 

  90. Stride E, Pancholi K, Edirisinghe MJ et al (2008) Increasing the nonlinear character of microbubble oscillations at low acoustic pressures. J R Soc Interface 5:807–811

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  91. Sud A, Dindyal S (2012) Microbubble therapies. The delivery of nanoparticles, pp 243–262

  92. Sun RR, Noble ML, Sun SS et al (2014) Development of therapeutic microbubbles for enhancing ultrasound-mediated gene delivery. J Control Release 182:111–120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Takeuchi S, Garstecki P, Weibel DB et al (2005) An axisymmetric flow-focusing microfluidic device. Adv Mater 17:1067–1072

    Article  CAS  Google Scholar 

  94. Talu E, Lozano MM, Powell RL et al (2006) Long-term stability by lipid coating monodisperse microbubbles formed by a flow-focusing device. Langmuir 22:9487–9490

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Talu E, Hettiarachchi K, Powell RL et al (2008) Maintaining monodispersity in a microbubble population formed by flow-focusing. Langmuir 24:1745–1749

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Talu E, Hettiarachchi K, Nguyen H et al (2006) Lipid-stabilized monodisperse microbubbles produced by flow focusing for use as ultrasound contrast agents. IEEE ultrasonics symposium, pp 1568–1571

  97. Talu E, Hettiarachchi K, Zhao S et al (2007) Tailoring the size distribution of ultrasound contrast agents: possible method for improving sensitivity in molecular imaging. Mol Imaging 6:384–392

    PubMed  PubMed Central  Google Scholar 

  98. Teh SY, Lin R, Hung LH et al (2008) Droplet microfluidics. Lab Chip 8:198–220

    Article  CAS  PubMed  Google Scholar 

  99. Wang AB, Lin IC, Hsieh YW et al (2011) Effective pressure and bubble generation in a microfluidic T-junction. Lab Chip 11:3499–3507

    Article  CAS  PubMed  Google Scholar 

  100. Xu JH, Li SW, Chen GG et al (2006) Formation of monodisperse microbubbles in a microfluidic device. AIChE J 52:2254–2259

    Article  CAS  Google Scholar 

  101. Xu JH, Li SW, Wang YJ et al (2006) Controllable gas-liquid phase flow patterns and monodisperse microbubbles in a microfluidic T-junction device. Appl Phys Lett 88:133506

    Article  CAS  Google Scholar 

  102. Xu JH, Chen R, Wang YD et al (2012) Controllable gas/liquid/liquid double emulsions in a dual-coaxial microfluidic device. Lab Chip 12:2029–2036

    Article  CAS  PubMed  Google Scholar 

  103. Xu RX (2011) Multifunctional microbubbles and nanobubbles for photoacoustic imaging. Contrast Media Mol Imaging 6:401–411

    Article  CAS  PubMed  Google Scholar 

  104. Xu RX, Povoski SP, Edward WMJ (2010) Targeted delivery of microbubbles and nanobubbles for image-guided thermal ablation therapy of tumors. Exp Rev Med Dev 7:303–306

    Article  Google Scholar 

  105. Zhang H, Meng H, Sun Q et al (2013) Multi-layer microbubbles by microfluidics. Engineering 05:146–148

    Article  Google Scholar 

  106. Zhang JM, Li EQ, Thoroddsen ST (2014) A co-flow-focusing monodisperse microbubble generator. J Micromech Microeng 24:035008

    Article  CAS  Google Scholar 

  107. Zhao YZ, Liang HD, Mei XG et al (2005) Preparation, characterization and in vivo observation of phospholipid-based gas-filled microbubbles containing hirudin. Ultrasound Med Biol 31:1237–1243

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chuanpin Chen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, H., Chen, J. & Chen, C. A novel technology: microfluidic devices for microbubble ultrasound contrast agent generation. Med Biol Eng Comput 54, 1317–1330 (2016). https://doi.org/10.1007/s11517-016-1475-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11517-016-1475-z

Keywords

Navigation