Skip to main content
Log in

Direct perturbation of neural integrator by bilateral galvanic vestibular stimulation

  • Original Article
  • Published:
Medical & Biological Engineering & Computing Aims and scope Submit manuscript

Abstract

Caloric vestibular stimulation (CVS) and galvanic vestibular stimulation (GVS) act primarily on the peripheral vestibular system. Although the electrical current applied during GVS is thought to flow through peripheral vestibular organs, some current may spread into areas within the central nervous system, particularly when the bilateral galvanic vestibular stimulation (bGVS) method is used. According to Alexander’s law, the magnitude of nystagmus increases with eccentric gaze movement, due to the function of the neural integrator (NI); thus, if the information for vestibular stimulation corresponds to Alexander’s law, the peripheral vestibular organ is stimulated. Therefore, it would appear that if CVS results comply with Alexander’s law, and bGVS results do not, the sites stimulated by bGVS are not perfectly located in the peripheral vestibular area. In our experiments on normal human subjects, the magnitude of nystagmus under CVS increased with rising gaze eccentricity in the direction that the magnitude of the nystagmus increases, and this change was found to follow Alexander’s law. However, in the case of nystagmus under bGVS, results did not follow Alexander’s law. In addition, study of the influences of bGVS at different current intensities on nystagmus magnitude showed that bGVS at 5 mA distorted nystagmus magnitude more than at 3 mA, which suggests bGVS acts not only on the peripheral vestibular nerves, but also on some areas of the central nervous system, particularly the NI. According to our experiments, bGVS directly affects neural integrator function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Anagnostou E, Heimberger J, Sklavos S, Anastasopoulos D (2011) Alexander’s law during high-acceleration head rotations in humans. NeuroReport 22(5):239–243

    Article  PubMed  Google Scholar 

  2. Aw ST, Todd MJ, Aw GE, Weber KP, Halmagyi GM (2008) Gentamicin vestibulotoxicity impairs human electrically evoked vestibulo-ocular reflex. Neurology 71:1776–1782

    Article  CAS  PubMed  Google Scholar 

  3. Baird RA, Desmadryl G, Fernandez C, Goldberg JM (1988) The vestibular nerve of the chinchilla. II. Relation between afferent response properties and peripheral innervation patterns in the semicircular canals. J Neurophysiol 60(1):182–203

    CAS  PubMed  Google Scholar 

  4. Bockisch CJ, Khojasteh E, Straumann D, Hegemann SCA (2012) Development of eye position dependency of slow phase velocity during caloric stimulation. PLoS One 7(12):e51409. doi:10.1371/journal.pone.0051409

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Cannon SC, Robinson DA (1987) Loss of the neural integrator of the oculomotor system from brain stem lesions in monkey. J Neurophysiol 57:1383–1409

    CAS  PubMed  Google Scholar 

  6. Cauquil AS, Bousquet P, Costes Salon MC, Dupui P, Bessou P (1997) Monaural and binaural galvanic vestibular stimulation in human dynamic balance function. Gait Posture 6:210–217

    Article  Google Scholar 

  7. Crawford JD, Cadera W, Vilis T (1991) Generation of torsional and vertical eye position signals by the interstitial nucleus of cajal. Science 252:1551–1553

    Article  CAS  PubMed  Google Scholar 

  8. Dera T (2009) Displacement of Listing’s plane by galvanic vestibular stimulation measured by 3-dimensional video-oculography. Ann N Y Acad Sci 1164:347–349

    Article  PubMed  Google Scholar 

  9. Doslak MJ, Dell’Osso LF, Daroff RB (1982) Alexander’s law: a model and resulting study. Ann Otol Rhinol Laryngol 91(3):316–322

    Article  CAS  PubMed  Google Scholar 

  10. Ferdjallah M, Bostick FX Jr, Barr RE (1996) Potential and current density distributions of cranial electrotherapy stimulation (CES) in a four-concentric-spheres model. IEEE Trans Biomed Eng 43:939–943

    Article  CAS  PubMed  Google Scholar 

  11. Goldberg JM, Smith CE, Fernandez C (1984) Relation between discharge regularity and responses to externally applied galvanic currents in vestibular nerve afferents of the squirrel monkey. J Neurophysiol 51(6):1236–1256

    CAS  PubMed  Google Scholar 

  12. Goldberg JM, Brichta AM, Wackym PA (2000) Efferent vestibular system: anatomy, physiology and neurochemistry. Neurochemistry of the vestibular system. CRC Press, Boca Raton, pp 61–94

  13. Hong KH, Lim YG, Park KS (2009) Effectiveness of thigh-to-thigh current path for the measurement of abdominal fat in bioelectrical impedance analysis. Med Biol Eng Comput 47:1265–1271

    Article  PubMed  Google Scholar 

  14. Hong KH, Shim H, Kim S, Park E, Kim K, Lee SM (2013) Galvanic vestibular stimulation with Alexander’s law: preliminary study. In: 6th International IEEE/EMBS conference neural engineering

  15. Khojasteh E, Bockisch CJ, Straumann D, Hegemann SCA (2013) A dynamic model for eye-position-dependence of spontaneous nystagmus in acute unilateral vestibular deficit (Alexander’s law). Eur J Neurosci 37:141–149

    Article  PubMed  Google Scholar 

  16. Kim J (2013) Tonic eye movements induced by bilateral and unilateral galvanic vestibular stimulation (GVS) in guinea pigs. Brain Res Bull 90:72–78

    Article  PubMed  Google Scholar 

  17. Lobel E, Kleine JF, Leroy-Willig A, Van de Moortele PF, Le Bihan D, Grusser OJ, Berthoz A (1999) Cortical areas activated by bilateral galvanic vestibular stimulation. Ann N Y Acad Sci 871(1):313–323

    Article  CAS  PubMed  Google Scholar 

  18. MacDougall HG, Brizuela AE, Curthoys IS (2003) Linearity, symmetry and additivity of the human eye-movement response to maintained unilateral and bilateral surface galvanic (DC) vestibular stimulation. Exp Brain Res 148:166–175

    Article  PubMed  Google Scholar 

  19. Mettens P, Godaux E, Cheron G, Galiana HL (1994) Effect of muscimol microinjections into the prepositus hypoglossai and the medial vestibular nuclei on cat eye movements. J Neurophysiol 72(2):785–802

    CAS  PubMed  Google Scholar 

  20. Miranda PC, Lomarev M, Hallett M (2006) Modeling the current distribution during transcranial direct current stimulation. Clin Neurophysiol 117(7):1623–1629

    Article  PubMed  Google Scholar 

  21. Robinson DA (1981) The use of control systems analysis in the neurophysiology of eye movements. Ann Rev Neurosci 4:463–503

    Article  CAS  PubMed  Google Scholar 

  22. Robinson DA, Zee DS, Hain TC, Holmes A, Rosenberg LF (1984) Alexander’s law: its behavior and origin in the human vestibulo-ocular reflex. Ann Neurol 16(6):714–722

    Article  CAS  PubMed  Google Scholar 

  23. Rush S, Driscoll DA (1968) Current distribution in the brain from surface electrodes. Anesth Analg 47:717–723

    Article  CAS  PubMed  Google Scholar 

  24. Scudder CA, Kaneko CS, Fuchs AF (2002) The brainstem burst generator for saccadic eye movements: a modern synthesis. Exp Brain Res 142:439–462

    Article  PubMed  Google Scholar 

  25. Tehovnik EJ (1996) Electrical stimulation of neural tissue to evoke behavioral responses. J Neurosci Methods 65:1–17

    Article  CAS  PubMed  Google Scholar 

  26. Utz KS, Dimova V, Oppenländer K, Kerkhoff G (2010) Electrified minds: transcranial direct current stimulation (tDCS) and galvanic vestibular stimulation (GVS) as methods of non-invasive brain stimulation in neuropsychology—a review of current data and future implications. Neuropsychologia 48:2789–2810

    Article  PubMed  Google Scholar 

  27. Wardman DL, Fitzpatrick RC (2002) What does galvanic vestibular stimulation stimulate? Adv Exp Med Biol 508:119–128

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This research was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded in part by the Ministry of Education (#2010-0020163) and in part by the Ministry of Science, ICT and Future Planning (#NRF-2013R1A2A2A04014796).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kyu-Sung Kim.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hong, K., Shim, Hm., Goh, M. et al. Direct perturbation of neural integrator by bilateral galvanic vestibular stimulation. Med Biol Eng Comput 55, 207–212 (2017). https://doi.org/10.1007/s11517-016-1502-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11517-016-1502-0

Keywords

Navigation