Skip to main content
Log in

Calcaneal varus angle change in normal calcaneus: a three-dimensional finite element analysis

  • Original Article
  • Published:
Medical & Biological Engineering & Computing Aims and scope Submit manuscript

Abstract

The objective of the study was to investigate the stress changes in the posterior articular surface of the calcaneus following alternation of the calcaneal varus angle in normal calcaneus and discuss the clinical significance of the calcaneal varus angle. Axial view radiographs of 165 volunteers were obtained to measure the calcaneal varus angle of normal calcaneus. A calcaneal model with different varus angle changes (including +2°, +4°, +6°, −2°, −4°, and −6°) was established using Creo 2.0 software. Stress changes at different calcaneal varus angles in the posterior articular surface of the calcaneus under a load of 100 N were measured. Stressed areas in posterior articular facets were slightly fewer following +2°, +4°, and +6° changes in varus angle than in normal varus angles with stress concentering regions moving to the anteromedial aspect of the posterior calcaneal facet. However, stress concentering areas in posterior calcaneal facets following −4° and −6° changes in varus angle obviously moved to the anterior and posterior medial side of posterior calcaneal facets. Stress distribution in the posterior articular surface of the calcaneus varies with the calcaneal varus angle. The decrease in calcaneal varus angle following operative treatment of calcaneal fractures should be controlled within 2°.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Abdul-Kadir MR, Hansen U, Klabunde R, Lucas D, Amis A (2008) Finite element modelling of primary hip stem stability: the effect of interference fit. J Biomech 41:587–594. doi:10.1016/j.jbiomech.2007.10.009

    Article  PubMed  Google Scholar 

  2. Bagaria V, Deshpande S, Rasalkar DD, Kuthe A, Paunipagar BK (2011) Use of rapid prototyping and three-dimensional reconstruction modeling in the management of complex fractures. Eur J Radiol 80:814–820. doi:10.1016/j.ejrad.2010.10.007

    Article  PubMed  Google Scholar 

  3. Bevill G, Keaveny TM (2009) Trabecular bone strength predictions using finite element analysis of micro-scale images at limited spatial resolution. Bone 44:579–584. doi:10.1016/j.bone.2008.11.020

    Article  PubMed  Google Scholar 

  4. Buckley RE, Meek RN (1992) Comparison of open versus closed reduction of intraarticular calcaneal fractures: a matched cohort in workmen. J Orthop Trauma 6:216–222

    Article  CAS  PubMed  Google Scholar 

  5. Buckley RE, Tough S (2004) Displaced intra-articular calcaneal fractures. J Am Acad Orthop Surg 12:172–178

    Article  PubMed  Google Scholar 

  6. Cheung JT, Zhang M, Leung AK, Fan YB (2005) Three-dimensional finite element analysis of the foot during standing—a material sensitivity study. J Biomech 38:1045–1054. doi:10.1016/j.jbiomech.2004.05.035

    Article  PubMed  Google Scholar 

  7. Epstein N, Chandran S, Chou L (2012) Current concepts review: intra-articular fractures of the calcaneus. Foot Ankle Int 33:79–86. doi:10.3113/FAI.2012.0079

    Article  PubMed  Google Scholar 

  8. Gefen A (2002) Stress analysis of the standing foot following surgical plantar fascia release. J Biomech 35:629–637

    Article  PubMed  Google Scholar 

  9. Guerado E, Bertrand ML, Cano JR (2012) Management of calcaneal fractures: what have we learnt over the years? Injury 43:1640–1650. doi:10.1016/j.injury.2012.05.011

    Article  PubMed  Google Scholar 

  10. Huang ZH, Li J, Chen RQ, Du JW, Zhang JX (2012) Three-dimensional finite element analysis of calcaneal fractures. Zhongguo Gu Shang 25:97–101

    PubMed  Google Scholar 

  11. Loucks C, Buckley R (1999) Bohler’s angle: correlation with outcome in displaced intra-articular calcaneal fractures. J Orthop Trauma 13:554–558

    Article  CAS  PubMed  Google Scholar 

  12. Marschollek M, Teistler M, Bott OJ, Stuermer KM, Pretschner DP, Dresing K (2006) Pre-operative dynamic interactive exploration of complex articular fractures using a novel 3D navigation tool. Methods Inf Med 45:384–388

    CAS  PubMed  Google Scholar 

  13. Ni M, Weng XH, Mei J, Niu WX (2014) Primary stability of absorbable screw fixation for intra-articular calcaneal fractures: a finite element analysis. J Med Biol Eng 35:236–241

    Article  CAS  Google Scholar 

  14. Pang QJ, Yu X, Guo ZH (2014) The sustentaculum tali screw fixation for the treatment of Sanders type II calcaneal fracture: a finite element analysis. Pak J Med Sci 30:1099–1103. doi:10.12669/pjms.305.5301

    PubMed  PubMed Central  Google Scholar 

  15. Rudang R, Darelid A, Nilsson M, Mellstrom D, Ohlsson C, Lorentzon M (2013) X-ray-verified fractures are associated with finite element analysis-derived bone strength and trabecular microstructure in young adult men. J Bone Miner Res 28:2305–2316. doi:10.1002/jbmr.1974

    Article  PubMed  Google Scholar 

  16. Shim VB, Fernandez JW, Gamage PB, Regnery C, Smith DW, Gardiner BS, Lloyd DG, Besier TF (2014) Subject-specific finite element analysis to characterize the influence of geometry and material properties in Achilles tendon rupture. J Biomech 47:3598–3604. doi:10.1016/j.jbiomech.2014.10.001

    Article  PubMed  Google Scholar 

  17. Simkin A, Stokes IA (1982) Characterisation of the dynamic vertical force distribution under the foot. Med Biol Eng Comput 20:12–18

    Article  CAS  PubMed  Google Scholar 

  18. Wu Z, Su Y, Chen W, Zhang Q, Liu Y, Li M, Wang H, Zhang Y (2012) Functional outcome of displaced intra-articular calcaneal fractures: a comparison between open reduction/internal fixation and a minimally invasive approach featured an anatomical plate and compression bolts. J Trauma Acute Care Surg 73:743–751. doi:10.1097/TA.0b013e318253b5f1

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ying-ze Zhang.

Ethics declarations

Conflict of interest

The authors have no competing interest to declare.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Xb., Wu, H., Zhang, Lg. et al. Calcaneal varus angle change in normal calcaneus: a three-dimensional finite element analysis. Med Biol Eng Comput 55, 429–437 (2017). https://doi.org/10.1007/s11517-016-1527-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11517-016-1527-4

Keywords

Navigation