Skip to main content

Advertisement

Log in

Mechanobiological simulations of peri-acetabular bone ingrowth: a comparative analysis of cell-phenotype specific and phenomenological algorithms

  • Original Article
  • Published:
Medical & Biological Engineering & Computing Aims and scope Submit manuscript

Abstract

Several mechanobiology algorithms have been employed to simulate bone ingrowth around porous coated implants. However, there is a scarcity of quantitative comparison between the efficacies of commonly used mechanoregulatory algorithms. The objectives of this study are: (1) to predict peri-acetabular bone ingrowth using cell-phenotype specific algorithm and to compare these predictions with those obtained using phenomenological algorithm and (2) to investigate the influences of cellular parameters on bone ingrowth. The variation in host bone material property and interfacial micromotion of the implanted pelvis were mapped onto the microscale model of implant–bone interface. An overall variation of 17–88 % in peri-acetabular bone ingrowth was observed. Despite differences in predicted tissue differentiation patterns during the initial period, both the algorithms predicted similar spatial distribution of neo-tissue layer, after attainment of equilibrium. Results indicated that phenomenological algorithm, being computationally faster than the cell-phenotype specific algorithm, might be used to predict peri-prosthetic bone ingrowth. The cell-phenotype specific algorithm, however, was found to be useful in numerically investigating the influence of alterations in cellular activities on bone ingrowth, owing to biologically related factors. Amongst the host of cellular activities, matrix production rate of bone tissue was found to have predominant influence on peri-acetabular bone ingrowth.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Anderson AE, Peters CL, Tuttle BD, Weiss JA (2005) Subject-specific finite element model of the pelvis: development, validation, sensitive studies. J Biomech Eng 127(3):364–373

    Article  PubMed  Google Scholar 

  2. Andreykiv A, van Keulen F, Prendergast PJ (2008) Computational mechanobiology to study the effect of surface geometry on peri-implant tissue differentiation. J Biomech Eng 130(5):051015

    Article  CAS  PubMed  Google Scholar 

  3. Andreykiv A, van Keulen F, Prendergast PJ (2008) Simulation of fracture healing incorporating mechanoregulation of tissue differentiation and dispersal/proliferation of cells. Biomech Model Mechanobiol 7(6):443–461

    Article  CAS  PubMed  Google Scholar 

  4. Bergmann G, Deuretzbacher G, Heller M, Graichen F, Rohlmann A, Strauss J, Duda GN (2001) Hip contact forces and gait patterns from routine activities. J Biomech 34(7):859–871

    Article  CAS  PubMed  Google Scholar 

  5. Carter DR, Blenman PR, Beaupre GS (1988) Correlations between mechanical stress history and tissue differentiation in initial fracture healing. J Orthop Res 6(5):736–748

    Article  CAS  PubMed  Google Scholar 

  6. Checa S, Prendergast PJ (2009) A mechanobiological model for tissue differentiation that includes angiogenesis: a lattice-based modeling approach. Ann Biomed Eng 37(1):129–145

    Article  PubMed  Google Scholar 

  7. Chou HY, Müftü S (2013) Simulation of peri-implant bone healing due to immediate loading in dental implant treatments. J Biomech 46(14):871–878

    Article  PubMed  Google Scholar 

  8. Claes LE, Heigele CA (1999) Magnitudes of local stress and strain along bony surfaces predict the course and type of fracture healing. J Biomech 32(3):255–266

    Article  CAS  PubMed  Google Scholar 

  9. Claes LE, Heigele CA, Neidlinger-Wilke C, Kaspar D, Seidl W, Margevicius KJ, Augat P (1998) Effects of mechanical factors on the fracture healing process. Clin Orthop Relat Res 355(Suppl):S132–S147

    Article  Google Scholar 

  10. Claes L, Augat P, Suger G, Wilke HJ (1997) Influence of size and stability of the osteotomy gap on the success of fracture healing. J Orthop Res 15(4):577–584

    Article  CAS  PubMed  Google Scholar 

  11. Clarke SG, Phillips ATM, Bull AMJ (2013) Evaluating a suitable level of model complexity for finite element analysis of the intact acetabulum. Comput Methods Biomech Biomed Eng 16(7):717–724

    Article  CAS  Google Scholar 

  12. Dalstra M, Huiskes R (1995) Load transfer across the pelvis bone. J Biomech 28(6):715–724

    Article  CAS  PubMed  Google Scholar 

  13. Dar FH, Meakin JR, Aspden RM (2002) Statistical methods in finite element analysis. J Biomech 35(9):1155–1161

    Article  PubMed  Google Scholar 

  14. Davies JE (1996) In vitro modeling of the bone/implant interface. Anat Rec 245(2):426–445

    Article  CAS  PubMed  Google Scholar 

  15. Davies JE (2003) Understanding peri-implant endosseous healing. J Dent Educ 67(8):932–949

    PubMed  Google Scholar 

  16. Dickinson A, Taylor A, Browne M (2012) Implant–bone interface healing and adaptation in resurfacing hip replacement. Comput Methods Biomech Biomed Eng 15(9):935–947

    Article  Google Scholar 

  17. Dostal WF, Andrews JG (1981) A three-dimensional biomechanical model of hip musculature. J Biomech 14(11):803–812

    Article  CAS  PubMed  Google Scholar 

  18. Engh CA, Zettl-Schaffer KF, Kukita Y, Sweet D, Jasty M, Bragdon C (1993) Histological and radiographic assessment of well functioning porous-coated acetabular components. A human postmortem retrieval study. J Bone Joint Surg Am 75A(6):814–824

    Article  Google Scholar 

  19. Enns-Bray WS, Owoc JS, Nishiyama KK, Boyd SK (2014) Mapping anisotropy of the proximal femur for enhanced image based finite element analysis. J Biomech 47(13):3272–3278

    Article  PubMed  Google Scholar 

  20. Funkenbusch PD (2005) Practical guide to designed experiments: a unified modular approach. Marcel Dekker, New York

    Google Scholar 

  21. García-Aznar JM, Kuiper JH, Gómez-Benito MJ, Doblaré M, Richardson JB (2007) Computational simulation of fracture healing: influence of interfragmentary movement on the callus growth. J Biomech 40(7):1467–1476

    Article  PubMed  Google Scholar 

  22. Ghosh R, Gupta S (2014) Bone remodelling around cementless composite acetabular components: the effects of implant geometry and implant–bone interfacial conditions. J Mech Behav Biomed Mater 32:257–269

    Article  CAS  PubMed  Google Scholar 

  23. Ghosh R, Gupta S, Dickinson A, Browne M (2012) Experimental validation of finite element models of intact and implanted composite hemi-pelvises using digital image correlation. J Biomech Eng 134(2):1–9

    Google Scholar 

  24. Ghosh R, Gupta S, Dickinson A, Browne M (2013) Experimental validation of numerically predicted strain and micromotion in intact and implanted composite hemi-pelvises. Proc Inst Mech Eng H 227(2):162–174

    Article  PubMed  Google Scholar 

  25. Ghosh R, Mukherjee K, Gupta S (2013) Bone remodelling around uncemented metallic and ceramic acetabular components. Proc Inst Mech Eng H 227(5):490–502

    Article  PubMed  Google Scholar 

  26. Ghosh R, Pal B, Ghosh D, Gupta S (2015) Finite element analysis of a hemi-pelvis: the effect of inclusion of cartilage layer on acetabular stresses and strain. Comput Methods Biomech Biomed Eng 18(7):697–710

    Article  Google Scholar 

  27. Gómez-Benito MJ, García-Aznar JM, Kuiper JH, Doblaré M (2005) Influence of fracture gap size on the pattern of long bone healing: a computational study. J Theor Biol 235(1):105–119

    Article  PubMed  Google Scholar 

  28. Hanzlik JA, Day JS (2013) Bone ingrowth in well-fixed retrieved porous tantalum implants. J Arthroplasty 28(6):922–927

    Article  PubMed  PubMed Central  Google Scholar 

  29. Hori RY, Lewis JL (1982) Mechanical properties of the fibrous tissue found at the bone-cement interface following total joint replacement. J Biomed Mater Res 16(6):911–927

    Article  CAS  PubMed  Google Scholar 

  30. Huiskes R, van Driel WD, Prendergast PJ, Søballe K (1997) A biomechanical regulatory model for periprosthetic fibrous tissue differentiation. J Mater Sci Mater Med 8(12):785–788

    Article  CAS  PubMed  Google Scholar 

  31. Isaksson H, van Donkelaar CC, Ito K (2009) Sensitivity of tissue differentiation and bone healing predictions to tissue properties. J Biomech 42(5):555–564

    Article  PubMed  Google Scholar 

  32. Isaksson H, van Donkelaar CC, Huiskes R, Ito K (2008) A mechano-regulatory bone-healing model incorporating cell-phenotype specific activity. J Theor Biol 252(2):230–246

    Article  PubMed  Google Scholar 

  33. Isaksson H, van Donkelaar CC, Huiskes R, Yao J, Ito K (2008) Determining the most important cellular characteristics for fracture healing using design of experiments methods. J Theor Biol 255(1):26–39

    Article  PubMed  Google Scholar 

  34. Isaksson H, Wilson W, van Donkelaar CC, Huiskes R, Ito K (2006) Comparison of biophysical stimuli for mechanoregulation of tissue differentiation during fracture healing. J Biomech 39(8):1507–1516

    Article  PubMed  Google Scholar 

  35. Jurvelin JS, Buschmann MD, Hunziker EB (1997) Optical and mechanical determination of Poisson’s ratio of adult bovine humeral articular cartilage. J Biomech 30(3):235–241

    Article  CAS  PubMed  Google Scholar 

  36. Khayyeri H, Checa S, Tägil M, Aspenberg P, Prendergast PJ (2011) Variability observed in mechano-regulated in vivo tissue differentiation can be explained by variation in cell mechano-sensitivity. J Biomech 44(6):1051–1058

    Article  PubMed  Google Scholar 

  37. Kienapfel H, Sprey C, Wilke A, Griss P (1999) Implant fixation by bone ingrowth. J Arthroplasty 14(3):355–368

    Article  CAS  PubMed  Google Scholar 

  38. Lacroix D, Prendergast PJ (2002) Three-dimensional simulation of fracture repair in the human tibia. Comput Methods Biomech Biomed Eng 5(5):369–376

    Article  CAS  Google Scholar 

  39. Lacroix D, Prendergast PJ (2002) A mechano-regulation model for tissue differentiation during fracture healing: analysis of gap size and loading. J Biomech 35(9):1163–1171

    Article  CAS  PubMed  Google Scholar 

  40. Lacroix D, Prendergast PJ, Li G, Marsh D (2002) Biomechanical model to simulate tissue differentiation and bone regeneration: application to fracture healing. Med Biol Eng Comput 40(1):14–21

    Article  CAS  PubMed  Google Scholar 

  41. Liu F, Jin Z, Roberts P, Grigoris P (2006) Importance of head diameter, clearance and cup wall thickness in elastohydrodynamic lubrication analysis of metal-on-metal hip resurfacing prostheses. Proc Inst Mech Eng H 220(6):695–704

    Article  PubMed  Google Scholar 

  42. Liu X, Niebur GL (2008) Bone ingrowth into a porous coated implant predicted by a mechano-regulatory tissue differentiation algorithm. Biomech Model Mechanobiol 7(4):335–344

    Article  PubMed  Google Scholar 

  43. Montgomery D (2008) Design and analysis of experiments. Wiley, Danver

    Google Scholar 

  44. Morrison ML (2006) Birmingham hip resurfacing system. Adv Mater Processes 164(10):52–53

    Google Scholar 

  45. Mukherjee K, Gupta S (2014) Simulation of tissue differentiation around acetabular cups: the effects of implant-bone relative displacement and polar gap. Adv Biomech Appl 1(2):95–109

    Article  Google Scholar 

  46. Mukherjee K, Gupta S (2015) Bone ingrowth around porous coated acetabular implant: a three-dimensional finite element study using mechanoregulatory algorithm. Biomech Model Mechanobiol 15(2):389–403

    Article  PubMed  Google Scholar 

  47. Pérez MA, Prendergast PJ (2007) Random-walk models of cell dispersal included in mechanobiological simulations of tissue differentiation. J Biomech 40(10):2244–2253

    Article  PubMed  Google Scholar 

  48. Phadke MS (1989) Quality engineering using robust design. Prentice-Hall, Engelwood Cliffs

    Google Scholar 

  49. Plackett RL, Burman JP (1946) The design of optimum multifactorial experiments. Biometrika 33(4):305–325

    Article  Google Scholar 

  50. Prendergast PJ, Huiskes R, Søballe K (1997) Biophysical stimuli on cells during tissue differentiation at implant interfaces. J Biomech 30(6):539–548

    Article  CAS  PubMed  Google Scholar 

  51. Puthumanapully PK, Browne M (2011) Tissue differentiation around a short stemmed metaphyseal loading implant employing a modified mechanoregulatory algorithm: a finite element study. J Orthop Res 29(5):787–794

    Article  PubMed  Google Scholar 

  52. San Antonio T, Ciaccia M, Müller-Karger C, Casanova E (2012) Orientation of orthotropic material properties in a femur FE model: a method based on the principal stresses directions. Med Eng Phys 34(7):914–919

    Article  CAS  PubMed  Google Scholar 

  53. Taddei F, Pancanti A, Viceconti M (2004) An improved method for the automatic mapping of computed tomography numbers onto finite element models. Med Eng Phys 26(1):61–69

    Article  PubMed  Google Scholar 

  54. Thompson MS, Northmore-Ball MD, Tanner KE (2002) Effect of acetabular resurfacing component material and fixation on the strain distribution in the pelvis. Proc Inst Mech Eng H 216(4):237–245

    Article  CAS  PubMed  Google Scholar 

  55. US Food and Drug Administration (FDA) (2006) Birmingham Hip Resurfacing (BHR) System: Summary of Safety and Effectiveness data http://www.accessdata.fda.gov/cdrh_docs/pdf4/P040033b.pdf. Accessed 21st August 2014

  56. Verhulp E, van Rietbergen B, Huiskes R (2006) Comparison of micro-level and continuum-level voxel models of the proximal femur. J Biomech 39(16):2951–2957

    Article  CAS  PubMed  Google Scholar 

  57. Yew A, Jin ZM, Donn A, Morlock MM, Isaac G (2002) Deformation of press-fitted metallic resurfacing cups part 2: finite element simulation. Proc Inst Mech Eng H 220(2):311–319

    Article  Google Scholar 

  58. Zhang QH, Wang JY, Lupton C, Adegbile PH, Guo ZX, Liu Q, Tong J (2010) A subject-specific pelvic bone model and its application to cemented acetabular replacements. J Biomech 43(14):2722–2727

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The authors are thankful to Dr. D. K. Nanda and Mr. A. Chattopadhyay of Computer and Informatics Centre, IIT, Kharagpur, for extending computational infrastructure required for the study. The suggestions of Prof. Abhijit Guha and Dr. Souptick Chanda, Department of Mechanical Engineering, IIT, Kharagpur, are greatly appreciated. The authors would also like to thank University of Southampton, UK, for providing CT scan of the patient under the UKIERI British Council Collaborative Research Project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sanjay Gupta.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mukherjee, K., Gupta, S. Mechanobiological simulations of peri-acetabular bone ingrowth: a comparative analysis of cell-phenotype specific and phenomenological algorithms. Med Biol Eng Comput 55, 449–465 (2017). https://doi.org/10.1007/s11517-016-1528-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11517-016-1528-3

Keywords

Navigation