Skip to main content
Log in

Noninvasive pulmonary artery pressure monitoring by EIT: a model-based feasibility study

  • Original Article
  • Published:
Medical & Biological Engineering & Computing Aims and scope Submit manuscript

Abstract

Current monitoring modalities for patients with pulmonary hypertension (PH) are limited to invasive solutions. A novel approach for the noninvasive and unsupervised monitoring of pulmonary artery pressure (PAP) in patients with PH was proposed and investigated. The approach was based on the use of electrical impedance tomography (EIT), a noninvasive and safe monitoring technique, and was tested through simulations on a realistic 4D bio-impedance model of the human thorax. Changes in PAP were induced in the model by simulating multiple types of hypertensive conditions. A timing parameter physiologically linked to the PAP via the so-called pulse wave velocity principle was automatically estimated from the EIT data. It was found that changes in PAP could indeed be reliably monitored by EIT, irrespective of the pathophysiological condition that caused them. If confirmed clinically, these findings could open the way for a new generation of noninvasive PAP monitoring solutions for the follow-up of patients with PH.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Abraham WT, Adamson PB, Bourge RC et al (2011) Wireless pulmonary artery haemodynamic monitoring in chronic heart failure: a randomised controlled trial. Lancet 377:658–666

    Article  PubMed  Google Scholar 

  2. Adler A, Lionheart WRB (2006) Uses and abuses of EIDORS: an extensible software base for EIT. Physiol Meas 27:S25–S42

    Article  PubMed  Google Scholar 

  3. Afshar M, Collado F, Doukky R (2012) Pulmonary hypertension in elderly patients with diastolic dysfunction and preserved ejection fraction. Open Cardiovasc Med J 6:1–8

    Article  PubMed  PubMed Central  Google Scholar 

  4. Billiet T (2009) Computational modeling of the hemodynamics in the pulmonary arterial tree: application to the human. M.S. thesis, Fac Eng Arch, Ghent Univ, Belgium

  5. Borges JB, Suarez-Sipmann F, Bohm SH et al (2012) Regional lung perfusion estimated by electrical impedance tomography in a piglet model of lung collapse. J Appl Physiol 112:225–236

    Article  PubMed  Google Scholar 

  6. Braun F, Proença M, Rapin M et al (2015) 4D Heart Model Helps Unveiling Contributors to Cardiac EIT Signal. In: Proc EIT, Neuchâtel, Switzerland

  7. Burrowes KS, Hunter PJ, Tawhai MH (2005) Anatomically based finite element models of the human pulmonary arterial and venous trees including supernumerary vessels. J Appl Physiol 99:731–738

    Article  PubMed  Google Scholar 

  8. Chiu YC, Arand PW, Shroff SG, Feldman T, Carroll JD (1991) Determination of pulse wave velocities with computerized algorithms. Am Heart J 121:1460–1470

    Article  CAS  PubMed  Google Scholar 

  9. Cox RH (1968) Wave propagation through a Newtonian fluid contained within a thick-walled, viscoelastic tube. Biophys J 8:691–709

    Article  PubMed Central  Google Scholar 

  10. Du Bois D, Du Bois EF (1989) A formula to estimate the approximate surface area if height and weight be known. 1916. Nutrition 5:303–311

    PubMed  Google Scholar 

  11. Frerichs I, Pulletz S, Elke G, Reifferscheid F, Schädler D, Scholz J, Weiler N (2009) Assessment of changes in distribution of lung perfusion by electrical impedance tomography. Respiration 77:282–291

    Article  PubMed  Google Scholar 

  12. Galiè N, Humbert M, Vachiery JL et al (2016) 2015 ESC/ERS Guidelines for the diagnosis and treatment of pulmonary hypertension. Eur Heart J 37:67–119

    Article  PubMed  Google Scholar 

  13. Gille J, Seyfarth HJ, Gerlach S, Malcharek M, Czeslick E, Sablotzki A (2012) Perioperative anesthesiological management of patients with pulmonary hypertension. Anesthesiol Res Pract 2012:356982

    PubMed  PubMed Central  Google Scholar 

  14. Guazzi M, Borlaug BA (2012) Pulmonary hypertension due to left heart disease. Circulation 126:975–990

    Article  PubMed  Google Scholar 

  15. Guyton AC, Hall JE (2010) Pulmonary Circulation, Pulmonary Edema, Pleural Fluid. Textbook of Medical Physiology. W.B. Saunders Company, Philadelphia, pp 444–451

  16. Harvey S, Harrison DA, Singer M et al (2005) Assessment of the clinical effectiveness of pulmonary artery catheters in management of patients in intensive care (PAC-Man): a randomised controlled trial. Lancet 366:472–477

    Article  PubMed  Google Scholar 

  17. Hasgall PA, Di Gennaro F, Baumgartner C, Neufeld E, Gosselin MC, Payne D, Klingenböck A, Kuster N (2015) IT’IS Database for thermal and electromagnetic parameters of biological tissues. Version 3.0, September 2015. Available: www.itis.ethz.ch/database

  18. Hellige G, Hahn G (2011) Cardiac-related impedance changes obtained by electrical impedance tomography: an acceptable parameter for assessment of pulmonary perfusion? Crit Care 15:430

    Article  PubMed  PubMed Central  Google Scholar 

  19. Hoeper MM, Borlaug BA (2006) Chronic thromboembolic pulmonary hypertension. Circulation 113:2011–2020

    Article  PubMed  Google Scholar 

  20. Holder DS (ed) (2005) Electrical impedance tomography: methods, history and applications. Institute of Physics Publishing, Bristol

    Google Scholar 

  21. Huang W, Yen RT, McLaurine M, Bledsoe G (1996) Morphometry of the human pulmonary vasculature. J Appl Physiol 81:2123–2133

    CAS  PubMed  Google Scholar 

  22. Humbert M, Sitbon O, Chaouat A et al (2006) Pulmonary arterial hypertension in France: results from a national registry. Am J Resp Crit Care 173:1023–1030

    Article  Google Scholar 

  23. Kitabatake A, Inoue M, Asao M et al (1983) Noninvasive evaluation of pulmonary hypertension by a pulsed Doppler technique. Circulation 68:302–309

    Article  CAS  PubMed  Google Scholar 

  24. Koledintseva MY, DuBroff RE, Schwartz RW (2006) A Maxwell Garnett Model for Dielectric Mixtures Containing Conducting Particles at Optical Frequencies. Prog Electromagn Res 63:223–242

    Article  Google Scholar 

  25. Kovacs G, Berghold A, Scheidl S, Olschewski H (2009) Pulmonary arterial pressure during rest and exercise in healthy subjects: a systematic review. Eur Respir J 34:888–894

    Article  CAS  PubMed  Google Scholar 

  26. Lankhaar JW, Westerhof N, Faes TJC, Marques KMJ, Marcus JT, Postmus PE, Vonk-Noordegraaf A (2006) Quantification of right ventricular afterload in patients with and without pulmonary hypertension. Am J Physiol-Heart C 291:H1731–H1737

    Article  CAS  Google Scholar 

  27. Lankhaar JW, Westerhof N, Faes TJC et al (2008) Pulmonary vascular resistance and compliance stay inversely related during treatment of pulmonary hypertension. Eur Heart J 29:1688–1695

    Article  PubMed  Google Scholar 

  28. Lau EM, Iyer N, Ilsar R, Bailey BP, Adams MR, Celermajer DS (2012) Abnormal pulmonary artery stiffness in pulmonary arterial hypertension: in vivo study with intravascular ultrasound. PLoS One 7:e33331

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Leys C, Ley C, Klein O, Bernard P, Licata L (2013) Detecting outliers: do not use standard deviation around the mean, use absolute deviation around the median. J Exp Soc Psychol 49:764–766

    Article  Google Scholar 

  30. Lionheart WRB (2004) EIT reconstruction algorithms: pitfalls, challenges and recent developments. Physiol Meas 25:125–142

    Article  PubMed  Google Scholar 

  31. Maggiorini M, Mélot C, Pierre S et al (2001) High-altitude pulmonary edema is initially caused by an increase in capillary pressure. Circulation 103:2078–2083

    Article  CAS  PubMed  Google Scholar 

  32. Mathew JP, Newman MF (2001) Hemodynamic and Related Monitoring. In: Estafanous FG, Barash PG, Reves JG (eds) Cardiac Anesthesia: Principles and Clinical Practice, 2nd edn. Lippincott Williams & Wilkins, Philadelphia, pp 195–236

    Google Scholar 

  33. McGoon MD, Kane GC (2009) Pulmonary hypertension: diagnosis and management. Mayo Clin Proc 84:191–207

    Article  PubMed  PubMed Central  Google Scholar 

  34. Milnor WR (1989) Hemodynamics, 2nd edn. Lippincott Williams & Wilkins, Baltimore

    Google Scholar 

  35. Mukkamala R, Hahn JO, Inan OT, Mestha LK, Kim CS, Töreyin H, Kyal S (2015) Towards ubiquitous blood pressure monitoring via pulse transit time: Theory and practice. IEEE T Bio-Med Eng 62:1879–1901

    Article  Google Scholar 

  36. Nagaya N, Ando M, Oya H, Ohkita Y, Kyotani S, Sakamaki F, Nakanishi N (2002) Plasma brain natriuretic peptide as a noninvasive marker for efficacy of pulmonary thromboendarterectomy. Ann Thorac Surg 74:180–184

    Article  PubMed  Google Scholar 

  37. Nichols W, O’Rourke M (2005) The pulmonary circulation. McDonald’s blood flow in arteries: theoretical, experimental and clinical principles, 5th edn. Hodder Arnold, London, pp 307–320

  38. Nopp P, Rapp E, Pfützner H, Nakesch H, Ruhsam C (1993) Dielectric properties of lung tissue as a function of air content. Phys Med Biol 38:699–716

    Article  CAS  PubMed  Google Scholar 

  39. Olufsen MS (1998) Modeling the Arterial System with Reference to an Anesthesia Simulator. Ph.D. dissertation no. 345, IMFUFA, Rotskilde Univ, Denmark

  40. Olufsen MS (2004) Modeling Flow and Pressure in the Systemic Arteries. Applied Mathematical Models in Human Physiology. SIAM, Philadelphia, pp 91–136

  41. Otsu N (1979) A threshold selection method from gray-level histograms. IEEE Trans Syst Man Cybern 9:62–66

    Article  Google Scholar 

  42. Pepke-Zaba J, Delcroix M, Lang I et al (2011) Chronic thromboembolic pulmonary hypertension (CTEPH): results from an international prospective registry. Circulation 124:1973–1981

    Article  PubMed  Google Scholar 

  43. Proença M, Braun F, Rapin M et al (2015) Influence of heart motion on cardiac output estimation by means of electrical impedance tomography: a case study. Physiol Meas 36:1075–1091

    Article  PubMed  Google Scholar 

  44. Qureshi MU, Vaughan GDA, Sainsbury C, Johnson M, Peskin CS, Olufsen MS, Hill NA (2014) Numerical simulation of blood flow and pressure drop in the pulmonary arterial and venous circulation. Biomed Model Mechan 13:1137–1154

    Article  Google Scholar 

  45. Reymond P (2011) Pressure and flow wave propagation in patient-specific models of the arterial tree. Ph.D. dissertation no. 5029, LHTC, EPFL, Lausanne, Switzerland

  46. Rich S, D’Alonzo GE, Dantzker DR, Levy PS (1985) Magnitude and implications of spontaneous hemodynamic variability in primary pulmonary hypertension. Am J Cardiol 55:159–163

    Article  CAS  PubMed  Google Scholar 

  47. Roth C, Ehrl A, Becher T, Frerichs I, Schittny JC, Weiler N, Wall WA (2015) Correlation between alveolar ventilation and electrical properties of lung parenchyma. Physiol Meas 36:1211–1226

    Article  PubMed  Google Scholar 

  48. Sanz J, Kariisa M, Dellegrottaglie S, Prat-González S, Garcia MJ, Fuster V, Rajagopalan S (2009) Evaluation of pulmonary artery stiffness in pulmonary hypertension with cardiac magnetic resonance. JACC Cardiovasc Imaging 2:286–295

    Article  PubMed  Google Scholar 

  49. Saouti N, Westerhof N, Postmus PE, Vonk-Noordegraaf A (2010) The arterial load in pulmonary hypertension. Eur Respir Rev 19:197–203

    Article  CAS  PubMed  Google Scholar 

  50. Schlebusch T, Nienke S, Leonhardt S, Walter M (2014) Bladder volume estimation from electrical impedance tomography. Physiol Meas 35:1813–1823

    Article  CAS  PubMed  Google Scholar 

  51. Schuster DP, Anderson C, Kozlowski J, Lange N (2002) Regional pulmonary perfusion in patients with acute pulmonary edema. J Nucl Med 43:863–870

    PubMed  Google Scholar 

  52. Shi Y, Lawford P, Hose R (2011) Review of zero-D and 1-D models of blood flow in the cardiovascular system. Biomed Eng Online 10:1–38

    Article  Google Scholar 

  53. Smit HJ, Vonk-Noordegraaf A, Boonstra A, de Vries PM, Postmus PE (2006) Assessment of the pulmonary volume pulse in idiopathic pulmonary arterial hypertension by means of electrical impedance tomography. Respiration 73:597–602

    Article  PubMed  Google Scholar 

  54. Solà J, Rimoldi SF, Allemann Y (2010) Ambulatory monitoring of the cardiovascular system: the role of pulse wave velocity. New Developments in Biomedical Engineering. InTech, Rijeka, pp 391–424

  55. Solà J, Adler A, Santos A, Tusman G, Suarez-Sipmann F, Bohm SH (2011) Non-invasive monitoring of central blood pressure by electrical impedance tomography: first experimental evidence. Med Biol Eng Comput 49:409–415

    Article  PubMed  Google Scholar 

  56. Solà J, Ferrario D, Adler A, Proença M, Brunner JX (2013) Method and apparatus for the non-invasive measurement of pulse transit times (PTT) (2013, Dec. 4). Patent EP 2593006 B1. Available: http://www.google.com/patents/EP2593006B1

  57. Strange G, Playford D, Stewart S, Deague JA, Nelson H, Kent A, Gabbay E (2012) Pulmonary hypertension: prevalence and mortality in the Armadale echocardiography cohort. Heart 98:1805–1811

    Article  PubMed  PubMed Central  Google Scholar 

  58. Tedford RJ, Hassoun PM, Mathai SC et al (2012) Pulmonary Capillary Wedge Pressure Augments Right Ventricular Pulsatile Loading. Circulation 125:289–297

    Article  PubMed  Google Scholar 

  59. van de Vosse FN, Stergiopulos N (2011) Pulse wave propagation in the arterial tree. Annu Rev Fluid Mech 43:467–499

    Article  Google Scholar 

  60. West JB (2007) High altitude pulmonary edema. High altitude medicine and physiology, 2nd edn. Hodder Arnold, London, pp 279–298

  61. Westerhof N, Lankhaar JW, Westerhof BE (2009) The arterial windkessel. Med Biol Eng Comput 47:131–141

    Article  PubMed  Google Scholar 

  62. Westerhof N, Stergiopulos N, Noble MIM (2010) Snapshots of Hemodynamics: An Aid for Clinical Research and Graduate Education, 2nd edn. Springer Science & Business Media, New York

    Book  Google Scholar 

  63. Wiener F, Morkin E, Skalak R, Fishman AP (1966) Wave propagation in the pulmonary circulation. Circ Res 19:834–850

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Dr. P. Reymond and T. Billiet (Ecole Polytechnique Fédérale de Lausanne, Switzerland) for providing the anatomical and circulatory models of the large pulmonary arteries, as well as Prof. A. Adler (Carleton University, Canada) for many valuable discussions. This work was supported in part by the Swiss National Science Foundation (SNSF) under Grant 205321-153364/1 and the SNSF/Nano-Tera project ObeSense (20NA21-1430801).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Proença.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Proença, M., Braun, F., Solà, J. et al. Noninvasive pulmonary artery pressure monitoring by EIT: a model-based feasibility study. Med Biol Eng Comput 55, 949–963 (2017). https://doi.org/10.1007/s11517-016-1570-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11517-016-1570-1

Keywords

Navigation