Skip to main content

Advertisement

Log in

Computer-aided diagnosis system for lung nodules based on computed tomography using shape analysis, a genetic algorithm, and SVM

  • Original Article
  • Published:
Medical & Biological Engineering & Computing Aims and scope Submit manuscript

Abstract

Lung cancer is the major cause of death among patients with cancer worldwide. This work is intended to develop a methodology for the diagnosis of lung nodules using images from the Image Database Consortium and Image Database Resource Initiative (LIDC–IDRI). The proposed methodology uses image processing and pattern recognition techniques. To differentiate the patterns of malignant and benign forms, we used a Minkowski functional, distance measures, representation of the vector of points measures, triangulation measures, and Feret diameters. Finally, we applied a genetic algorithm to select the best model and a support vector machine for classification. In the test stage, we applied the proposed methodology to 1405 (394 malignant and 1011 benign) nodules from the LIDC–IDRI database. The proposed methodology shows promising results for diagnosis of malignant and benign forms, achieving accuracy of 93.19 %, sensitivity of 92.75 %, and specificity of 93.33 %. The results are promising and demonstrate a good rate of correct detections using the shape features. Because early detection allows faster therapeutic intervention, and thus a more favorable prognosis for the patient, herein we propose a methodology that contributes to the area.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Alajlan N, Kamel MS, Freeman G (2006) Multi-object image retrieval based on shape and topology. Image Commun 1(10):904–918. doi:10.1016/j.image.2006.09.002

    Google Scholar 

  2. Alajlan N, Rube IE, Kamel MS, Freeman G (2007) Shape retrieval using triangle-area representation and dynamic space warping. Pattern Recognit 1(7):1911–1920. doi:10.1016/j.patcog.2006.12.005

    Article  Google Scholar 

  3. Armato SG, McLennan G, Bidaut L, McNitt-Gray MF, Meyer CR, Reeves AP, Zhao B, Aberle DR, Henschke CI, Hoffman EA, Kazerooni EA, MacMahon H, Van Beeke EJR, Yankelevitz D, Biancardi AM, Bland PH, Brown MS, Engelmann RM, Laderach GE, Max D, Pais RC, Qing DPY, Roberts RY, Smith AR, Starkey A, Batrah P, Caligiuri P, Farooqi A, Gladish GW, Jude CM, Munden RF, Petkovska I, Quint LE, Schwartz LH, Sundaram B, Dodd LE, Fenimore C, Gur D, Petrick N, Freymann J, Kirby J, Hughes B, Casteele AV, Gupte S, Sallamm M, Heath MD, Kuhn MH, Dharaiya E, Burns R, Fryd DS, Salganicoff M, Anand V, Shreter U, Vastagh S, Croft BY (2011) The lung image database consortium (lidc) and image database resource initiative (idri): a completed reference database of lung nodules on ct scans. Med Phys 1(2):915–31. http://www.biomedsearch.com/nih/Lung-Image-Database-Consortium-LIDC/21452728.html

  4. Chang CC, Lin CJ (2013) LIBSVM—a library for support vector machines. http://www.csie.ntu.edu.tw/~cjlin/libsvm/

  5. Chen W, Li Z, Bai L, Lin Y (2011) Nf-kappab in lung cancer, a carcinogenesis mediator and a prevention and therapy target. Front Biosci (Landmark edition) 1:1172–1185. doi:10.2741/3782

    Article  Google Scholar 

  6. Dandil E, Cakiroglu M, Eksi Z, Ozkan M, Kurt O, Canan A (2014) Artificial neural network-based classification system for lung nodules on computed tomography scans. In: 2014 6th International conference of soft computing and pattern recognition (SoCPaR), p 382–386. doi:10.1109/SOCPAR.2014.7008037

  7. David L, Kien K, Marie FD (2011) Computation of minkowski measures on 2d and 3d binary images. Image Anal Stereol 1(2):83–92. http://www.ias-iss.org/ojs/IAS/article/view/811

  8. de Carvalho Filho AO, de Sampaio WB, Silva AC, de Paiva AC, Nunes RA, Gattass M (2014) Automatic detection of solitary lung nodules using quality threshold clustering, genetic algorithm and diversity index. Artif Intell Med 1(3):165–177. doi:10.1016/j.artmed.2013.11.002

    Article  Google Scholar 

  9. de Valk J, Eijkman E (1984) Analysis of eye fixations during the diagnostic interpretation of chest radiographs. Med Biol Eng Comput 1(4):353–360. doi:10.1007/BF02442106

    Article  Google Scholar 

  10. Duda RO, Hart PE (1973) Pattern Classif Scene Anal. Wiley-Interscience Publication, New York

    Google Scholar 

  11. El-Baz A, Nitzken M, Khalifa F, Elnakib A, Gimelfarb G, Falk R, El-Ghar M (2011) 3D shape analysis for early diagnosis of malignant lung nodules. In: Szekely G, Hahn H (eds) Information processing in medical imaging, Lecture notes in computer science, vol 6801, p 772–783. Springer, Berlin. doi:10.1007/978-3-642-22092-0-63

  12. Elizabeth D, Nehemiah H, Retmin Raj C, Kannan A (2012) Computer-aided diagnosis of lung cancer based on analysis of the significant slice of chest computed tomography image. Image Process IET 1(6):697–705. doi:10.1049/iet-ipr.2010.0521

    Article  Google Scholar 

  13. Fujimoto J, Wistuba II (2014) Current concepts on the molecular pathology of non-small cell lung carcinoma. Semin Diagn Pathol 1(4):306–313. doi:10.1053/j.semdp.2014.06.008 (Lung Carcinoma: Beyond The WHO Classification)

    Article  Google Scholar 

  14. Galloway MM (1975) Texture analysis using gray level run lengths. Comput Graphics Image Process 1(2):172–179. doi:10.1016/S0146-664X(75)80008-6

    Article  Google Scholar 

  15. Gould M, Maclean C, Kuschner W, Rydzak C, Owens D (2001) Accuracy of positron emission tomography for diagnosis of pulmonary nodules and mass lesions: a meta-analysis. JAMA 285(7):914–924. doi:10.1001/jama.285.7.914

    Article  CAS  PubMed  Google Scholar 

  16. Hadwiger H (1957) Vorlesungen über Inhalt, Oberfläche und Isoperimetrie. Grundlehren der mathematischen Wissenschaften. Springer. https://books.google.com.br/books?id=-BWoAAAAIAAJ

  17. Hair JF, Black WC, Babin BJ, Anderson RE, Tatham RL (2006) Multivariate data analysis, vol 6. Pearson Prentice Hall, Upper Saddle River

    Google Scholar 

  18. Hansell DM, Bankier AA, MacMahon H, McLoud TC, Muller NL, Remy J (2008) Fleischner society: glossary of terms for thoracic imaging. Radiology 246(3):697–722. doi:10.1148/radiol.2462070712

    Article  PubMed  Google Scholar 

  19. Jabon SA, Raicu DS, Furst JD (2009) Content-based versus semantic-based retrieval: an lidc case study. Proc SPIE 7263:72,631L–72,631L–8. doi:10.1117/12.812877

  20. Krewer H, Geiger B, Hall L, Goldgof D, Gu Y, Tockman M, Gillies, R (2013) Effect of texture features in computer aided diagnosis of pulmonary nodules in low-dose computed tomography. In: 2013 IEEE international conference on systems, man, and cybernetics (SMC), pp 3887–3891. doi:10.1109/SMC.2013.663

  21. Kumar S, Ramesh J, Vanathi P, Gunavathi K (2011) Robust and automated lung nodule diagnosis from ct images based on fuzzy systems. In: 2011 International conference on process automation, control and computing (PACC), pp 1–6. doi:10.1109/PACC.2011.5979050

  22. Lederlin M, Revel MP, Khalil A, Ferretti G, Milleron B, Laurent F (2013) Management strategy of pulmonary nodule in 2013. Diagn Int Imaging 1(11):1081–1094. doi:10.1016/j.diii.2013.05.007

    Article  Google Scholar 

  23. Leef 3rd J, Klein J (2002) The solitary pulmonary nodule. Radiol Clin N Am 1(1):123–143, ix. doi:10.1056/NEJMcp012290

  24. Mecke K, Stoyan D (2002) Morphology of condensed matter: physics and geometry of spatially complex systems. Lecture notes in physics. Springer. https://books.google.com.br/books?id=0BeJY4ZwndsC

  25. Mecke K, Buchert T, Wagner H (1993) Robust morphological measures for large-scale structure in the Universe. Max-Planck-Institut für Astrophysik Garching, München: MPA. Max-Planck-Inst. für Astrophysik. https://books.google.com.br/books?id=jLzgGwAACAAJ

  26. Michal C, Elke T, Abhir B, David P (2008) Integral geometry descriptors for characterizing emphysema and lung fibrosis in HRCT images. First Int Workshop Pulm Image Anal 1:155–164

    Google Scholar 

  27. Miyake N, Kim H, Itai Y, Tan JK, Ishikawa S, Katsuragawa S (2009) Automatic detection of lung nodules in temporal subtraction image by use of shape and density features. In: 2009 Fourth international conference on innovative computing, information and control (ICICIC), pP 1288–1292. doi:10.1109/ICICIC.2009.118

  28. Nascimento LB, de Paiva AC, Silva AC (2012) Lung nodules classification in ct images using shannon and simpson diversity indices and svm. In: Proceedings of the 8th international conference on machine learning and data mining in pattern recognition, 12. Springer-Verlag, Berlin, pp 454–466

  29. Orozco H, Osiris Vergara Villegas O, Maynez L, Sanchez V, De Jesus Ochoa Dominguez H (2012) Lung nodule classification in frequency domain using support vector machines. In: 2012 11th International conference on information science, signal processing and their applications (ISSPA), pp 870–875. doi:10.1109/ISSPA.2012.6310676

  30. Parveen SS, Kavitha C (2014) Article: classification of lung cancer nodules using svm kernels. Int J Comput Appl 1(25):25–28 (full text available)

    Google Scholar 

  31. Patil SS, Godoy MC, Sorensen JI, Marom EM (2014) Lung cancer imaging. Semin Diagn Pathol 1(4):293–305. doi:10.1053/j.semdp.2014.06.007 (Lung Carcinoma: Beyond The WHO Classification)

    Article  Google Scholar 

  32. Roth K, Boike J, Vogel HJ (2005) Quantifying permafrost patterns using minkowski densities. Permafr Periglac Process 1(3):277–290. doi:10.1002/ppp.531

    Article  Google Scholar 

  33. Santaló L (2004) Integral geometry and geometric probability. Cambridge Mathematical Library. Beijing World Publishing Corporation (BJWPC). https://books.google.com.br/books?id=xq1iiumncV4C

  34. Schölkopf B, Smola A (2002) Learning with kernels: support vector machines, optimization, and beyond. MIT Press, Cambridge (Regularization)

    Google Scholar 

  35. Seemann MD, Seemann O, Luboldt W, Bonél H, Sittek H, Dienemann H, Staebler A (2000) Differentiation of malignant from benign solitary pulmonary lesions using chest radiography, spiral CT and HRCT. Lung Cancer 1(2):105–124. doi:10.1016/S0169-5002(00)00104-5

    Article  Google Scholar 

  36. Sone S, Takashima S, Li F, Yang Z, Honda T, Maruyama Y, Hasegawa M, Yamanda T, Kubo K, Hanamura K, Asakura K (1998) Mass screening for lung cancer with mobile spiral computed tomography scanner. Lancet 351(9111):1242–1245. doi:10.1016/S0140-6736(97)08229-9

    Article  CAS  PubMed  Google Scholar 

  37. Stewart (2014) World Cancer Report 2014. IARC Nonserial Publication, New York

  38. Umbaugh SE, Snyder J, Fedorovskaya E (2011) Digital image processing and analysis: human and computer vision applications with cviptools, second edition. J Electron Imaging 1(3):039, 901–039, 901–903. doi:10.1117/1.3628179

  39. van Erkel A, Pattynama P (1998) Receiver operating characteristic (ROC) analysis: basic principles and applications in radiology. Eur J Radiol 1(2):88–94

    Article  Google Scholar 

  40. Way TW, Sahiner B, Chan HP, Hadjiiski L, Cascade PN, Chughtai A, Bogot N, Kazerooni E (2009) Computer-aided diagnosis of pulmonary nodules on ct scans: improvement of classification performance with nodule surface features. Med Phys 1(7):3086–3098. doi:10.1118/1.3140589

    Article  Google Scholar 

  41. Yang X, Shen X, Long J, Chen H (2012) An improved median-based otsu image thresholding algorithm. AASRI Proc 1:468–473. doi:10.1016/j.aasri.2012.11.074 (conference on modelling, identification and control)

    Article  Google Scholar 

  42. Ye X, Lin X, Dehmeshki J, Slabaugh G, Beddoe G (2009) Shape-based computer-aided detection of lung nodules in thoracic CT images. IEEE Trans Biomed Eng 1(7):1810–1820. doi:10.1109/TBME.2009.2017027

    Google Scholar 

Download references

Acknowledgments

The authors acknowledge Coordination for the Improvement of Higher Education Personnel (CAPES), National Council for Scientific and Technological Development (CNPq) and the Foundation for the Protection of Research and Scientific and Technological Development of the State of Maranhão (FAPEMA) for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonio Oseas de Carvalho Filho.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Carvalho Filho, A.O., Silva, A.C., de Paiva, A.C. et al. Computer-aided diagnosis system for lung nodules based on computed tomography using shape analysis, a genetic algorithm, and SVM. Med Biol Eng Comput 55, 1129–1146 (2017). https://doi.org/10.1007/s11517-016-1577-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11517-016-1577-7

Keywords

Navigation