Skip to main content

Advertisement

Log in

Sparse representation-based EMD and BLDA for automatic seizure detection

  • Original Article
  • Published:
Medical & Biological Engineering & Computing Aims and scope Submit manuscript

Abstract

Epilepsy is a serious chronic neurological disorder, which affects more than 50 million people worldwide, and automatic seizure detection on EEG recordings is extremely required in the diagnosis and monitoring of epilepsy. This paper presents a novel seizure detection method using sparse representation-based Earth Mover’s Distance (SR-EMD). In the proposed algorithm, wavelet decomposition is executed on the original EEG recordings with five scales, and the scales 3, 4 and 5 are selected to structure the distributions of EEG signals. Then, the Gaussian mixture models (GMMs) of EEG signals are estimated and the distances between GMMs are computed using SR-EMD as EEG features. After that, EEG features are sent to Bayesian linear discriminant analysis classifier for classification. To improve the detection accuracy, the post-processing procedure is employed finally. The long-term intracranial EEG dataset with 21 patients is used to evaluate the performance of the method, and the satisfactory sensitivity of 93.54 %, specificity of 97.57 % and false detection rate of 0.223/h are achieved. The results indicate that SR-EMD is more effective and efficient than the conventional Earth Mover’s Distance (EMD). Moreover, the good performance and fast speed of this algorithm make it suitable for the real-time seizure monitoring application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Abdulghani AM, Casson AJ, Rodriguez-Villegas E (2012) Compressive sensing scalp EEG signals: implementations and practical performance. Med Biol Eng Comput 50(11):1137–1145

    Article  PubMed  Google Scholar 

  2. Acharya UR, Yanti R, Zheng JW, Krishnan MMR, Tan JH, Martis RJ, Lim CM (2013) Automated diagnosis of epilepsy using CWT, HOS and texture parameters. Int J Neural Syst 23(03):1350009

    Article  PubMed  Google Scholar 

  3. Adeli H, Zhou Z, Dadmehr N (2003) Analysis of EEG records in an epileptic patient using wavelet transform. J Neurosci Methods 123(1):69–87

    Article  PubMed  Google Scholar 

  4. Ayoubian L, Lacoma H, Gotman J (2013) Automatic seizure detection in SEEG using high frequency activities in wavelet domain. Med Eng Phys 35(3):319–328

    Article  CAS  PubMed  Google Scholar 

  5. Bajaj V, Pachori RB (2012) Classification of seizure and nonseizure EEG signals using empirical mode decomposition. IEEE Trans Inf Technol Biomed 16(6):1135–1142

    Article  PubMed  Google Scholar 

  6. Binnie CD, Prior PF (1994) Electroencephalography. J Neurol Neurosurg Psychiatry 57(11):1308–1319

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Bishop CM (2006) Pattern recognition and machine learning. Springer, New York

    Google Scholar 

  8. Da Silva FL, Blanes W, Kalitzin SN, Parra J, Suffczynski P, Velis DN (2003) Epilepsies as dynamical diseases of brain systems: basic models of the transition between normal and epileptic activity. Epilepsia 44(s12):72–83

    Article  Google Scholar 

  9. Fisher RS, Boas WVE, Blume W, Elger C, Genton P, Lee P, Engel J (2005) Epileptic seizures and epilepsy: definitions proposed by the International League Against Epilepsy (ILAE) and the International Bureau for Epilepsy (IBE). Epilepsia 46(4):470–472

    Article  PubMed  Google Scholar 

  10. Ghosh-Dastidar S, Adeli H, Dadmehr N (2007) Mixed-band wavelet-chaos-neural network methodology for epilepsy and epileptic seizure detection. IEEE Trans Bio-Med Eng 54(9):1545–1551

    Article  Google Scholar 

  11. Gotman J (1982) Automatic recognition of epileptic seizures in the EEG. Electroencephalogr Clin Neurophysiol 54(5):530–540

    Article  CAS  PubMed  Google Scholar 

  12. Gotman J (1990) Automatic seizure detection: improvements and evaluation. Electroencephalogr Clin Neurophysiol 76(4):317–324

    Article  CAS  PubMed  Google Scholar 

  13. Guerrero-Mosquera C, Trigueros AM, Franco JI, Navia-Vázquez Á (2010) New feature extraction approach for epileptic EEG signal detection using time-frequency distributions. Med Biol Eng Comput 48(4):321–330

    Article  PubMed  Google Scholar 

  14. Hall CW Jr, Sarkar A (2011) Mutual information in natural position order of electroencephalogram is significantly increased at seizure onset. Med Biol Eng Comput 49(2):133–141

    Article  PubMed  Google Scholar 

  15. Hastie T, Tibshirani R, Friedman J (2009) The elements of statistical learning. Springer, New York

    Book  Google Scholar 

  16. Hauser WA, Annegers JF, Rocca WA (1996) Descriptive epidemiology of epilepsy: contributions of population-based studies from Rochester, Minnesota. Mayo Clin Proc 71(6):576–586

    Article  CAS  PubMed  Google Scholar 

  17. Hoffmann U, Vesin JM, Ebrahimi T, Diserens K (2008) An efficient P300-based brain–computer interface for disabled subjects. J Neurosci Methods 167(1):115–125

    Article  PubMed  Google Scholar 

  18. Jing F, Li M, Zhang HJ, Zhang B (2004) An efficient and effective region-based image retrieval framework. IEEE Trans Image Process 13(5):699–709

    Article  PubMed  Google Scholar 

  19. Kalayci T, Özdamar Ö (1995) Wavelet preprocessing for automated neural network detection of EEG spikes. IEEE Eng Med Biol 14(2):160–166

    Article  Google Scholar 

  20. Kannathal N, Choo ML, Acharya UR, Sadasivan PK (2005) Entropies for detection of epilepsy in EEG. Comput Methods Prog Bio 80(3):187–194

    Article  CAS  Google Scholar 

  21. Karavasilis V, Nikou C, Likas A (2011) Visual tracking using the earth mover’s distance between gaussian mixtures and kalman filtering. Image Vis Comput 29(5):295–305

    Article  Google Scholar 

  22. Khan YU, Gotman J (2003) Wavelet based automatic seizure detection in intracerebral electroencephalogram. Clin Neurophysiol 114(5):898–908

    Article  CAS  PubMed  Google Scholar 

  23. Kwan P, Brodie MJ (2000) Early identification of refractory epilepsy. New Engl J Med 342(5):314–319

    Article  CAS  PubMed  Google Scholar 

  24. Lei X, Yang P, Yao D (2009) An empirical Bayesian framework for brain–computer interfaces. IEEE Trans Neural Syst Rehabil 17(6):521–529

    Article  Google Scholar 

  25. Li P, Wang Q, Zhang L (2013) A novel earth mover’s distance methodology for image matching with gaussian mixture models. In: IEEE International Conference on Computer Vision, pp. 1689–1696

  26. Ling H, Okada K (2007) An efficient earth mover’s distance algorithm for robust histogram comparison. IEEE Trans Pattern Anal 29(5):840–853

    Article  Google Scholar 

  27. Liu Y, Zhou W, Yuan Q, Chen S (2012) Automatic seizure detection using wavelet transform and SVM in long-term intracranial EEG. IEEE Trans Neural Syst Rehabil 20(6):749–755

    Article  Google Scholar 

  28. Logan B, Salomon A (2001) A music similarity function based on signal analysis. In: IEEE international conference on multimedia and expo, p. 190

  29. Logesparan L, Casson AJ, Rodriguez-Villegas E (2012) Optimal features for online seizure detection. Med Biol Eng Comput 50(7):659–669

    Article  PubMed  Google Scholar 

  30. Logesparan L, Rodriguez-Villegas E, Casson AJ (2015) The impact of signal normalization on seizure detection using line length features. Med Biol Eng Comput 53(10):929–942

    Article  PubMed  Google Scholar 

  31. Luenberger DG, Ye Y (2008) Linear and nonlinear programming. Springer, New York

    Google Scholar 

  32. Majumdar KK, Vardhan P (2011) Automatic seizure detection in ECoG by differential operator and windowed variance. IEEE Trans Neural Syst Rehabil 19(4):356–365

    Article  Google Scholar 

  33. Martis RJ, Acharya UR, Tan JH, Petznick A, Tong L, Chua CK, Ng EYK (2013) Application of intrinsic time-scale decomposition (ITD) to EEG signals for automated seizure prediction. Int J Neural Syst 23(05):1350023

    Article  PubMed  Google Scholar 

  34. Murro AM, King DW, Smith JR, Gallagher BB, Flanigin HF, Meador K (1991) Computerized seizure detection of complex partial seizures. Electroencephalogr Clin Neurophysiol 79(4):330–333

    Article  CAS  PubMed  Google Scholar 

  35. Murugavel ASM, Ramakrishnan S (2015) Hierarchical multi-class SVM with ELM kernel for epileptic EEG signal classification. Med Biol Eng Comput. doi:10.1007/s11517-015-1351-2

    PubMed  Google Scholar 

  36. Nagaraj SB, Stevenson NJ, Marnane WP, Boylan GB, Lightbody G (2014) Neonatal seizure detection using atomic decomposition with a novel dictionary. IEEE Trans Bio-Med Eng 61(11):2724–2732

    Article  Google Scholar 

  37. Niknazar M, Mousavi SR, Vosoughi Vahdat B, Sayyah M (2013) A new framework based on recurrence quantification analysis for epileptic seizure detection. IEEE J Biomed Health Inform 17(3):572–578

    Article  CAS  PubMed  Google Scholar 

  38. Parvez MZ, Paul M (2014) Epileptic seizure detection by analyzing EEG signals using different transformation techniques. Neurocomputing 145:190–200

    Article  Google Scholar 

  39. Qu H, Gotman J (1993) Improvement in seizure detection performance by automatic adaptation to the EEG of each patient. Electroencephalogr Clin Neurophysiol 86(2):79–87

    Article  CAS  PubMed  Google Scholar 

  40. Raghunathan S, Jaitli A, Irazoqui PP (2011) Multistage seizure detection techniques optimized for low-power hardware platforms. Epilepsy Behav 22:S61–S68

    Article  PubMed  Google Scholar 

  41. Rubner Y, Tomasi C, Guibas LJ (2000) The earth mover’s distance as a metric for image retrieval. Int J Comput Vis 40(2):99–121

    Article  Google Scholar 

  42. Snyder DE, Echauz J, Grimes DB, Litt B (2008) The statistics of a practical seizure warning system. J Neural Eng 5(4):392–401

    Article  PubMed  PubMed Central  Google Scholar 

  43. Stadelmann T, Freisleben B (2006) Fast and robust speaker clustering using the earth mover’s distance and Mixmax models. In: International Conference on Acoustics Speech, pp. I–I

  44. Subasi A (2007) EEG signal classification using wavelet feature extraction and a mixture of expert model. Expert Syst Appl 32(4):1084–1093

    Article  Google Scholar 

  45. Temko A, Thomas E, Marnane W, Lightbody G, Boylan G (2011) EEG-based neonatal seizure detection with support vector machines. Clin Neurophysiol 122(3):464–473

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Thomas EM, Temko A, Lightbody G, Marnane WP, Boylan GB (2010) Gaussian mixture models for classification of neonatal seizures using EEG. Physiol Meas 31(7):1047–1064

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Übeyli ED (2010) Lyapunov exponents/probabilistic neural networks for analysis of EEG signals. Expert Syst Appl 37(2):985–992

    Article  Google Scholar 

  48. Wang Y, Zhou W, Yuan Q, Li X, Meng Q, Zhao X, Wang J (2013) Comparison of ictal and interictal EEG signals using fractal features. Int J Neural Syst 23(06):1350028

    Article  PubMed  Google Scholar 

  49. Xie S, Krishnan S (2013) Wavelet-based sparse functional linear model with applications to EEGs seizure detection and epilepsy diagnosis. Med Biol Eng Comput 51(1–2):49–60

    Article  PubMed  Google Scholar 

  50. Yuan S, Zhou W, Yuan Q, Li X, Wu Q, Zhao X, Wang J (2015) Kernel collaborative representation-based automatic seizure detection in intracranial EEG. Int J Neural Syst 25(02):1550003

    Article  PubMed  Google Scholar 

  51. Zhang Y, Zhou W, Yuan S (2015) Multifractal analysis and relevance vector machine based automatic seizure detection in intracranial EEG. Int J Neural Syst 25(06):1550020

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The support of the Key Program of Natural Science Foundation of Shandong Province (No. ZR2013FZ002), the Program of Science and Technology of Suzhou (No. ZXY2013030), the Development Program of Science and Technology of Shandong (No. 2014GSF118171) and the Fundamental Research Funds of Shandong University (No. 2014QY008), China, is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weidong Zhou.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yuan, S., Zhou, W., Li, J. et al. Sparse representation-based EMD and BLDA for automatic seizure detection. Med Biol Eng Comput 55, 1227–1238 (2017). https://doi.org/10.1007/s11517-016-1587-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11517-016-1587-5

Keywords

Navigation