Skip to main content
Log in

Plug&Play Brain–Computer Interfaces for effective Active and Assisted Living control

  • Original Article
  • Published:
Medical & Biological Engineering & Computing Aims and scope Submit manuscript

Abstract

Brain–Computer Interfaces (BCI) rely on the interpretation of brain activity to provide people with disabilities with an alternative/augmentative interaction path. In light of this, BCI could be considered as enabling technology in many fields, including Active and Assisted Living (AAL) systems control. Interaction barriers could be removed indeed, enabling user with severe motor impairments to gain control over a wide range of AAL features. In this paper, a cost-effective BCI solution, targeted (but not limited) to AAL system control is presented. A custom hardware module is briefly reviewed, while signal processing techniques are covered in more depth. Steady-state visual evoked potentials (SSVEP) are exploited in this work as operating BCI protocol. In contrast with most common SSVEP-BCI approaches, we propose the definition of a prediction confidence indicator, which is shown to improve overall classification accuracy. The confidence indicator is derived without any subject-specific approach and is stable across users: it can thus be defined once and then shared between different persons. This allows some kind of Plug&Play interaction. Furthermore, by modelling rest/idle periods with the confidence indicator, it is possible to detect active control periods and separate them from “background activity”: this is capital for real-time, self-paced operation. Finally, the indicator also allows to dynamically choose the most appropriate observation window length, improving system’s responsiveness and user’s comfort. Good results are achieved under such operating conditions, achieving, for instance, a false positive rate of 0.16 min−1, which outperform current literature findings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Andersson P, Viergever MA, Pluim J, Ramsey NF, Siero J (2009) fMRI based BCI control using spatial visual attention at 7T. In: 4th international IEEE/EMBS conference on neural engineering, 2009. NER ‘09, pp 444–446. doi:10.1109/NER.2009.5109328

  2. Bakardjian H, Tanaka T, Cichocki A (2010) Optimization of SSVEP brain responses with application to eight-command brain–computer interface. Neurosci Lett 469(1):34–38. doi:10.1016/j.neulet.2009.11.039

    Article  CAS  PubMed  Google Scholar 

  3. Bi L, Fan X, Liu Y (2013) EEG-based brain-controlled mobile robots: a survey. IEEE Trans Hum–Mach Syst 43(2):161–176. doi:10.1109/TSMCC.2012.2219046

    Article  Google Scholar 

  4. Bianchi V, Grossi F, De Munari I, Ciampolini P (2012) Multi sensor assistant: a multisensor wearable device for ambient assisted living. J Med Imaging Health Inform 2(1):70–75. doi:10.1166/jmihi.2012.1058

    Article  Google Scholar 

  5. Breitwieser C, Kaiser V, Neuper C, Müller-Putz GR (2012) Stability and distribution of steady-state somatosensory evoked potentials elicited by vibro-tactile stimulation. Med Biol Eng Comput 50(4):347–357. doi:10.1007/s11517-012-0877-9

    Article  PubMed  Google Scholar 

  6. Carabalona R, Grossi F, Tessadri A, Castiglioni P, Caracciolo A, De Munari I (2012) Light on! Real world evaluation of a P300-based brain–computer interface (BCI) for environment control in a smart home. Ergonomics 55(5):552–563. doi:10.1080/00140139.2012.661083

    Article  PubMed  Google Scholar 

  7. Carlson T, Millán JDR (2013) Brain-controlled wheelchairs: a robotic architecture. Robot Autom Mag IEEE 20(1):65–73. doi:10.1109/MRA.2012.2229936

    Article  Google Scholar 

  8. Cecotti H (2010) A self-paced and calibration-less SSVEP-based brain–computer interface speller. IEEE Trans Neural Syst Rehabil Eng 18(2):127–133. doi:10.1109/TNSRE.2009.2039594

    Article  PubMed  Google Scholar 

  9. Choi JK, Choi MG, Kim JM, Bae HM (2013) Efficient data extraction method for near-infrared spectroscopy (NIRS) systems with high spatial and temporal resolution. IEEE Trans Biomed Circuits Syst 7(2):169–177. doi:10.1109/TBCAS.2013.2255052

    Article  PubMed  Google Scholar 

  10. Corralejo R, Nicolás-Alonso LF, Álvarez D, Hornero R (2014) A P300-based brain–computer interface aimed at operating electronic devices at home for severely disabled people. Med Biol Eng Comput 52(10):861–872. doi:10.1007/s11517-014-1191-5

    Article  PubMed  Google Scholar 

  11. Diez PF, Mut VA, Perona EMA, Leber EL (2011) Asynchronous BCI control using high-frequency SSVEP. J Neuroeng Rehabil. doi:10.1186/1743-0003-8-39

    PubMed  PubMed Central  Google Scholar 

  12. Do AH, Wang PT, King CE, Abiri A, Nenadic Z (2011) Brain–computer interface controlled functional electrical stimulation system for ankle movement. J Neuroeng Rehabil. doi:10.1186/1743-0003-8-49

    PubMed  PubMed Central  Google Scholar 

  13. Garcia-Molina G, Zhu D (2011) Optimal spatial filtering for the steady state visual evoked potential: BCI application. In: 5th international IEEE/EMBS conference on neural engineering, pp 156–160. doi:10.1109/NER.2011.5910512

  14. Grossi F, Bianchi V, Matrella G, De Munari I, Ciampolini P (2008) An assistive home automation and monitoring system. In: ICCE 2008 digest of technical papers, pp 1–2. doi:10.1109/ICCE.2008.4588080

  15. Haberman MA, Spinelli EM (2012) A multichannel EEG acquisition scheme based on single ended amplifiers and digital DRL. IEEE Trans Biomed Circuits Syst 6(6):614–618. doi:10.1109/TBCAS.2012.2190733

    Article  PubMed  Google Scholar 

  16. Hinterberger T, Schmidt S, Neumann N, Mellinger J, Blankertz B, Curio G, Birbaumer N (2004) Brain–computer communication and slow cortical potentials. IEEE Trans Biomed Eng 51(6):1011–1018. doi:10.1109/TBME.2004.827067

    Article  PubMed  Google Scholar 

  17. Horki P, Solis-Escalante T, Neuper C, Müller-Putz G (2011) Combined motor imagery and SSVEP based BCI control of a 2 DoF artificial upper limb. Med Biol Eng Comput 49(5):567–577. doi:10.1007/s11517-011-0750-2

    Article  PubMed  Google Scholar 

  18. Khan OI, Kim SH, Rasheed T, Khan A, Kim TS (2009) Extraction of P300 using constrained independent component analysis. In: Annual international conference of the IEEE (EMBC 2009), pp 4031–4034. doi:10.1117/1.JBO.17.7.077011

  19. Leeb R, Perdikis S, Tonin L, Biasiucci A, Tavella M, Creatura M, Molina A, Al-Khodairy A, Carlson T, Millán JDR (2013) Transferring brain–computer interfaces beyond the laboratory: successful application control for motor-disabled users. Artif Intell Med 59(2):121–132. doi:10.1016/j.artmed.2013.08.004

    Article  PubMed  Google Scholar 

  20. Li Y, Gao X, Liu H, Gao S (2004) Classification of single-trial electroencephalogram during finger movement. IEEE Trans Biomed Eng 51(6):1019–1025. doi:10.1109/TBME.2004.826688

    Article  PubMed  Google Scholar 

  21. Lin Z, Zhang C, Wu W, Gao X (2007) Frequency recognition based on canonical correlation analysis for SSVEP-based BCIs. IEEE Trans Biomed Eng 54:1172–1176. doi:10.1109/TBME.2006.886577

    Article  PubMed  Google Scholar 

  22. Low-noise, 8-channel, 24-Bit analog front-end for biopotential measurements (2012). http://www.ti.com/lit/ds/symlink/ads1299.pdf. Accessed 03 Oct 2016

  23. Millán JDR (2004) On the need for on-line learning in brain–computer interfaces. Conf Proc Neural Netw 2004(4):2877–2882

    Google Scholar 

  24. Millán JDR, Mourino J (2003) Asynchronous BCI and local neural classifiers: an overview of the adaptive brain interface project. IEEE Trans Neural Syst Rehabil Eng 11(2):159–161. doi:10.1109/TNSRE.2003.814435

    Article  Google Scholar 

  25. Millán JDR, Renkens F, Mourino J, Gerstner W (2004) Noninvasive brain-actuated control of a mobile robot by human EEG. IEEE Trans Biomed Eng 51(6):1026–1033. doi:10.1109/TBME.2004.827086

    Article  Google Scholar 

  26. Mora N, Bianchi V, De Munari I, Ciampolini P (2013) A low cost brain computer interface platform for AAL applications. In: AAATE 2013 conference proceedings, vol 33, pp 19–22. doi:10.3233/978-1-61499-304-9-946

  27. Mora N, Bianchi V, De Munari I, Ciampolini P (2014) Controlling AAL environments through BCI. In: MESA 2014—10th IEEE/ASME international conference on mechatronic and embedded systems and applications, conference proceedings, pp 1–6. doi:10.1109/MESA.2014.6935627

  28. Mora N, Bianchi V, De Munari I, Ciampolini P (2014) A BCI platform supporting AAL applications. In: Universal access in human–computer interaction. Design and development methods for universal access, pp 515–526. doi:10.1007/978-3-319-07437-5_49

  29. Mora N, Bianchi V, De Munari I, Ciampolini P (2014) Simple and efficient methods for steady state visual evoked potential detection in BCI embedded system. In: 2014 IEEE international conference on acoustics, speech and signal processing (ICASSP), pp 2044–2048. doi:10.1109/ICASSP.2014.6853958

  30. Mora N, De Munari I, Ciampolini P (2015) Improving BCI usability as HCI in ambient assisted living system control. Lecture notes in computer science (including subseries lecture notes in artificial intelligence and lecture notes in bioinformatics), vol 9183, pp 293–303. doi:10.1007/978-3-319-20816-9_28

  31. Mora N, De Munari I, Ciampolini P (2015) Exploitation of a compact, cost-effective EEG module for plug-and-play, SSVEP-based BCI.” In: 2015 7th international IEEE/EMBS conference on neural engineering (NER), pp 142–145. doi:10.1109/NER.2015.7146580

  32. Mora N, De Munari I, Ciampolini P (2015) Subject-independent, SSVEP-based BCI: trading off among accuracy, responsiveness and complexity. In: 2015 7th international IEEE/EMBS conference on neural engineering (NER), pp 146–149. doi:10.1109/NER.2015.7146581

  33. Mueller-Putz GR, Breitwieser C, Cincotti F, Leeb R, Schreuder M, Leotta F, Tavella M, Bianchi L, Kreilinger A, Ramsay A, Rohm M, Sagebaum M, Tonin L, Neuper C, Millán JDR (2011) Tools for brain-computer interaction: a general concept for a hybrid BCI (hBCI). Front Neuroinform. doi:10.3389/fninf.2011.00030

    Google Scholar 

  34. Nijboer F, Sellers EW, Mellinger J, Jordan MA, Matuz T, Furdea A, Halder S et al (2008) A P300-based brain–computer interface for people with amyotrophic lateral sclerosis. Clin Neurophysiol 119(8):1909–1916. doi:10.1016/j.clinph.2015.01.013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Ortner R, Allison BZ, Korisek G, Gaggl H, Pfurtscheller G (2011) An SSVEP BCI to control a hand orthosis for persons with tetraplegia. IEEE Trans Neural Syst Rehabil Eng 19(1):1–5. doi:10.1109/TNSRE.2010.2076364

    Article  PubMed  Google Scholar 

  36. Pan J, Li Y et al (2013) Discrimination between control and idle States in asynchronous SSVEP-based brain switches: a pseudo-key-based approach. IEEE Trans Neural Syst Rehabil Eng 21(3):435–443. doi:10.1109/TNSRE.2013.2253801

    Article  PubMed  Google Scholar 

  37. Pfurtscheller G (1992) Event-related synchronization (ERS): an electrophysiological correlate of cortical areas at rest. Electroencephalogr Clin Neurophysiol 83(1):62–69. doi:10.1016/0013-4694(92)90133-3

    Article  CAS  PubMed  Google Scholar 

  38. Pfurtscheller G, Brunner C, Schlögl A, Lopes da Silva FH (2006) Mu rhythm (de) synchronization and EEG single-trial classification of different motor imagery tasks. NeuroImage 31(1):153–159. doi:10.1016/j.neuroimage.2005.12.003

    Article  CAS  PubMed  Google Scholar 

  39. Pfurtscheller G, Solis-Escalante T et al (2010) Self-paced operation of an SSVEP-based orthosis with and without an imagery. IEEE Trans Neural Syst Rehabil Eng 18(4):409–414. doi:10.1109/TNSRE.2010.2040837

    Article  PubMed  Google Scholar 

  40. Salvaris M, Cinel C, Citi LR, Poli R (2012) Novel protocols for P300-based brain–computer interfaces. IEEE Trans Neural Syst Rehabil Eng 20:8–17. doi:10.1109/TNSRE.2011.2174463

    Article  PubMed  Google Scholar 

  41. Sanei S, Chambers JA (2013) EEG signal processing. Wiley, New York. doi:10.1002/9780470511923

    Google Scholar 

  42. Sawan M, Salam MT, Le Lan J, Kassab A, Gelinas S, Vannasing P, Lesage F, Lassonde M, Nguyen DK (2013) Wireless recording systems: from noninvasive EEG-NIRS to invasive EEG devices. IEEE Trans Biomed Circuits Syst 7(2):186–195. doi:10.1109/TBCAS.2013.2255595

    Article  PubMed  Google Scholar 

  43. Sitaram R, Zhang H, Guan C, Thulasidas M, Hoshi Y, Ishikawa A, Shimizu K, Birbaumer N (2007) Temporal classification of multichannel near-infrared spectroscopy signals of motor imagery for developing a brain–computer interface. NeuroImage 34(4):1416–1427. doi:10.1016/j.neuroimage.2006.11.005

    Article  PubMed  Google Scholar 

  44. Sitaram R, Lee S, Ruiz S, Birbaumer N (2011) Real-time regulation and detection of brain states from fMRI signals. Neurofeedback Neuromodul Tech Appl. doi:10.1016/B978-0-12-382235-2.00009-3

    Google Scholar 

  45. Spinelli EM, Pallas-Areny R, Mayosky MA (2003) AC-coupled front-end for biopotential measurements. Biomed Eng IEEE Trans 50(3):391–395. doi:10.1109/TBME.2003.808826

    Article  Google Scholar 

  46. ICT Technology and disability (2014). http://www.handimatica.com/ Accessed 03 Oct 2016

  47. Townsend G, Graimann B, Pfurtscheller G (2004) Continuous EEG classification during motor imagery-simulation of an asynchronous BCI. IEEE Trans Neural Syst Rehabil Eng 12(2):258–265. doi:10.1109/TNSRE.2004.827220

    Article  PubMed  Google Scholar 

  48. Volosyak I (2011) SSVEP-based Bremen–BCI interface–boosting information transfer rates. J Neural Eng 8(3):036020. doi:10.1088/1741-2560/8/3/036020

    Article  PubMed  Google Scholar 

  49. Walter S, Quigley C, Andersen SK, Mueller MM (2012) Effects of overt and covert attention on the steady-state visual evoked potential. Neurosci Lett 519(1):37–41. doi:10.1016/j.neulet.2012.05.011

    Article  CAS  PubMed  Google Scholar 

  50. Wolpaw JR, Birbaumer N, McFarland DJ, Pfurtscheller G, Vaughan TM (2002) Brain–computer interfaces for communication and control. Clin Neurophysiol 113(6):767–791. doi:10.1145/1941487.1941506

    Article  PubMed  Google Scholar 

  51. Zhang JC, Xu YQ, Yao L (2007) P300 Detection using boosting neural networks with application to BCI. In: 2007 IEEE/ICME, pp 1526–1530. doi:10.1109/ICCME.2007.4382002

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Niccolò Mora.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mora, N., De Munari, I., Ciampolini, P. et al. Plug&Play Brain–Computer Interfaces for effective Active and Assisted Living control. Med Biol Eng Comput 55, 1339–1352 (2017). https://doi.org/10.1007/s11517-016-1596-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11517-016-1596-4

Keywords

Navigation