Skip to main content
Log in

Numerical study to indicate the vulnerability of plaques using an idealized 2D plaque model based on plaque classification in the human coronary artery

  • Original Article
  • Published:
Medical & Biological Engineering & Computing Aims and scope Submit manuscript

Abstract

Atherosclerosis is one of the leading causes of death in the world. In this study, an idealized 2D plaque model based on plaque classification in the coronary artery is developed. When creating the idealized 2D model for each plaque type (fibrocalcic, FC; fibrofatty, FT; calcified fibroatheroma, CaFA; fibroatheroma, FA; calcified thin-cap fibroatheroma, CaTCFA; thin-cap fibroatheroma, TCFA), the cap thickness and stenosis by diameter were set as variables. In order to establish the correlation between each plaque type and plaque rupture, a numerical simulation was performed and the stress and stress gradient were reviewed to analyze the mechanical behavior. Results show that both the TCFA and CaTCFA plaque types, which have the smallest cap thicknesses of the different types of plaque, showed relatively high stress values in the thin membrane when compared with the FT type. The FT type is considered to be relatively stable since it does not have necrotic core or a thin membrane. With a stenosis rate of 50% and a cap thickness of 60 μm, the TCFA and CaTCFA types showed approximately 11 and 110% higher stress values, respectively, and 679 and 1568% higher negative stress gradient values, respectively. In other words, the plaque types with thin caps, which have weak load-bearing capacities, showed high stress values and high negative stress gradients in the radial direction. It is understood that this result could indicate the possibility of plaque rupture.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Akyildiz AC, Speelman L, van Brummelen H, Gutiérrez MA, Virmani R, van der Lugt A, Van Der Steen A, Wentzel JJ, Gijsen F (2011) Effects of intima stiffness and plaque morphology on peak cap stress. Biomed Eng Online 10:1–13

    Article  Google Scholar 

  2. Bangalore S, Qin J, Sloan S, Murphy SA, Cannon CP, Investigators PI-TT (2010) What is the optimal blood pressure in patients after acute coronary syndromes? Relationship of blood pressure and cardiovascular events in the pravastatin or atorvastatin evaluation and infection therapy-thrombolysis in myocardial infarction (PROVE IT-TIMI) 22 Trial. Circulation 122:2142–2151

    Article  CAS  PubMed  Google Scholar 

  3. Cai JM, Hatsukami TS, Ferguson MS, Small R, Polissar NL, Yuan C (2002) Classification of human carotid atherosclerotic lesions with in vivo multicontrast magnetic resonance imaging. Circulation 106:1368–1373

    Article  PubMed  Google Scholar 

  4. Calvert PA, Obaid DR, O’Sullivan M, Shapiro LM, McNab D, Densem CG, Schofield PM, Braganza D, Clarke SC, Ray KK (2011) Association between IVUS findings and adverse outcomes in patients with coronary artery disease: the VIVA (VH-IVUS in Vulnerable Atherosclerosis) Study. JACC Cardiovasc Imaging 4:894–901

    Article  PubMed  Google Scholar 

  5. Chiu T-Y, Chen C-Y, Chen S-Y, Soon C-C, Chen J-W (2012) Indicators associated with coronary atherosclerosis in metabolic syndrome. Clin Chim Acta 413:226–231

    Article  CAS  PubMed  Google Scholar 

  6. Dolla WJS, House JA, Marso SP (2012) Stratification of risk in thin cap fibroatheromas using peak plaque stress estimates from idealized finite element models. Med Eng Phys 34:1330–1338

    Article  PubMed  Google Scholar 

  7. Falk E, Shah PK, Fuster V (1995) Coron Plaque Disrupt. Circulation 92:657–671

    Article  CAS  PubMed  Google Scholar 

  8. Frauenfelder T, Boutsianis E, Schertler T, Husmann L, Leschka S, Poulikakos D, Marincek B, Alkadhi H (2007) In-vivo flow simulation in coronary arteries based on computed tomography datasets: feasibility and initial results. Eur Radiol 17:1291–1300

    Article  PubMed  Google Scholar 

  9. Gere JM, Goodno BJ (2009) Mechanics of materials. Cengage Learning Inc, Independence

    Google Scholar 

  10. Gonzalo N, Garcia-Garcia HM, Regar E, Barlis P, Wentzel J, Onuma Y, Ligthart J, Serruys PW (2009) In vivo assessment of high-risk coronary plaques at bifurcations with combined intravascular ultrasound and optical coherence tomography. JACC Cardiovasc Imaging 2:473–482

    Article  PubMed  Google Scholar 

  11. Goubergrits L, Kertzscher U, Schöneberg B, Wellnhofer E, Petz C, Hege H-C (2008) CFD analysis in an anatomically realistic coronary artery model based on non-invasive 3D imaging: comparison of magnetic resonance imaging with computed tomography. Int J Cardiovasc Imaging 24:411–421

    Article  PubMed  Google Scholar 

  12. Gradus-Pizlo I, Bigelow B, Mahomed Y, Sawada SG, Rieger K, Feigenbaum H (2003) Left anterior descending coronary artery wall thickness measured by high-frequency transthoracic and epicardial echocardiography includes adventitia. Am J Cardiol 91:27–32

    Article  PubMed  Google Scholar 

  13. Jang I-K, Tearney GJ, MacNeill B, Takano M, Moselewski F, Iftima N, Shishkov M, Houser S, Aretz HT, Halpern EF (2005) In vivo characterization of coronary atherosclerotic plaque by use of optical coherence tomography. Circulation 111:1551–1555

    Article  PubMed  PubMed Central  Google Scholar 

  14. Karimi A, Navidbakhsh M, Shojaei A, Hassani K, Faghihi S (2014) Study of plaque vulnerability in coronary artery using Mooney-Rivlin model: a combination of finite element and experimental method. Biomed Eng Appl Basis Commun 26(01):1450013

    Article  Google Scholar 

  15. Kim Y-H, Kim J-E, Ito Y, Shih AM, Brott B, Anayiotos A (2008) Hemodynamic analysis of a compliant femoral artery bifurcation model using a fluid structure interaction framework. Ann Biomed Eng 36:1753–1763

    Article  PubMed  Google Scholar 

  16. Kock SA, Nygaard JV, Eldrup N, Fründ E-T, Klærke A, Paaske WP, Falk E, Kim WY (2008) Mechanical stresses in carotid plaques using MRI-based fluid–structure interaction models. J Biomech 41:1651–1658

    Article  PubMed  Google Scholar 

  17. Lee S-W, Steinman DA (2007) On the relative importance of rheology for image-based CFD models of the carotid bifurcation. J Biomech Eng 129:273–278

    Article  PubMed  Google Scholar 

  18. Li Z-Y, Howarth SP, Tang T, Gillard JH (2006) How critical is fibrous cap thickness to carotid plaque stability? A flow–plaque interaction model. Stroke 37:1195–1199

    Article  PubMed  Google Scholar 

  19. Lindsey JB, House JA, Kennedy KF, Marso SP (2009) Diabetes duration is associated with increased thin-cap fibroatheroma detected by intravascular ultrasound with virtual histology. Circ Cardiovasc Interv 2:543–548

    Article  PubMed  Google Scholar 

  20. Loree HM, Kamm R, Stringfellow R, Lee R (1992) Effects of fibrous cap thickness on peak circumferential stress in model atherosclerotic vessels. Circ Res 71:850–858

    Article  CAS  PubMed  Google Scholar 

  21. Morlacchi S, Colleoni SG, Cárdenes R, Chiastra C, Diez JL, Larrabide I, Migliavacca F (2013) Patient-specific simulations of stenting procedures in coronary bifurcations: two clinical cases. Med Eng Phys 35:1272–1281

    Article  PubMed  Google Scholar 

  22. Nair A, Kuban BD, Tuzcu EM, Schoenhagen P, Nissen SE, Vince DG (2002) Coronary plaque classification with intravascular ultrasound radiofrequency data analysis. Circulation 106:2200–2206

    Article  PubMed  Google Scholar 

  23. Nakamura T, Kubo N, Funayama H, Sugawara Y, Ako J, Si Momomura (2009) Plaque characteristics of the coronary segment proximal to the culprit lesion in stable and unstable patients. Clin Cardiol 32:E9–E12

    Article  PubMed  Google Scholar 

  24. Nasu K, Tsuchikane E, Katoh O, Vince DG, Virmani R, Surmely J-F, Murata A, Takeda Y, Ito T, Ehara M (2006) Accuracy of in vivo coronary plaque morphology assessment: a validation study of in vivo virtual histology compared with in vitro histopathology. J Am Coll Cardiol 47:2405–2412

    Article  PubMed  Google Scholar 

  25. Pericevic I, Lally C, Toner D, Kelly DJ (2009) The influence of plaque composition on underlying arterial wall stress during stent expansion: the case for lesion-specific stents. Med Eng Phys 31:428–433. doi:10.1016/j.medengphy.2008.11.005

    Article  PubMed  Google Scholar 

  26. Raffel OC, Merchant FM, Tearney GJ, Chia S, Gauthier DD, Pomerantsev E, Mizuno K, Bouma BE, Jang I-K (2008) In vivo association between positive coronary artery remodelling and coronary plaque characteristics assessed by intravascular optical coherence tomography. Eur Heart J 29:1721–1728

    Article  PubMed  PubMed Central  Google Scholar 

  27. Rambhia S, Liang X, Xenos M, Alemu Y, Maldonado N, Kelly A, Chakraborti S, Weinbaum S, Cardoso L, Einav S (2012) Microcalcifications increase coronary vulnerable plaque rupture potential: a patient-based micro-CT fluid–structure interaction study. Ann Biomed Eng 40:1443–1454

    Article  CAS  PubMed  Google Scholar 

  28. Sironi A, Petz R, De Marchi D, Buzzigoli E, Ciociaro D, Positano V, Lombardi M, Ferrannini E, Gastaldelli A (2012) Impact of increased visceral and cardiac fat on cardiometabolic risk and disease. Diabet Med 29:622–627

    Article  CAS  PubMed  Google Scholar 

  29. Tang D, Yang C, Zheng J, Woodard PK, Sicard GA, Saffitz JE, Yuan C (2004) 3D MRI-based multicomponent FSI models for atherosclerotic plaques. Ann Biomed Eng 32:947–960

    Article  PubMed  Google Scholar 

  30. Teng Z, Sadat U, Li Z, Huang X, Zhu C, Young VE, Graves MJ, Gillard JH (2010) Arterial luminal curvature and fibrous-cap thickness affect critical stress conditions within atherosclerotic plaque: an in vivo MRI-based 2D finite-element study. Ann Biomed Eng 38:3096–3101

    Article  PubMed  Google Scholar 

  31. Torii R, Wood NB, Hadjiloizou N, Dowsey AW, Wright AR, Hughes AD, Davies J, Francis DP, Mayet J, Yang GZ (2009) Fluid–structure interaction analysis of a patient-specific right coronary artery with physiological velocity and pressure waveforms. Commun Numer Methods Eng 25:565–580

    Article  Google Scholar 

  32. Toussaint JF, LaMuraglia GM, Southern JF, Fuster V, Kantor HL (1996) Magnetic resonance images lipid, fibrous, calcified, hemorrhagic, and thrombotic components of human atherosclerosis in vivo. Circulation 94:932–938

    Article  CAS  PubMed  Google Scholar 

  33. Vandeghinste B, Trachet B, Renard M, Casteleyn C, Staelens S, Loeys B, Segers P, Vandenberghe S (2011) Replacing vascular corrosion casting by in vivo micro-CT imaging for building 3D cardiovascular models in mice. Mol Imaging Biol 13:78–86

    Article  PubMed  Google Scholar 

  34. Yang C, Bach RG, Zheng J, Naqa IE, Woodard PK, Teng Z, Billiar K, Tang D (2009) In vivo IVUS-based 3-D fluid–structure interaction models with cyclic bending and anisotropic vessel properties for human atherosclerotic coronary plaque mechanical analysis. IEEE Trans Biomed Eng 56:2420–2428

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seong Wook Cho.

Ethics declarations

Acknowledgements

This research was supported by the Chung-Ang University Graduate Research Scholarship in 2016 and Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (No. 2015R1D1A1A01057341).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, W., Choi, G.J. & Cho, S.W. Numerical study to indicate the vulnerability of plaques using an idealized 2D plaque model based on plaque classification in the human coronary artery. Med Biol Eng Comput 55, 1379–1387 (2017). https://doi.org/10.1007/s11517-016-1602-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11517-016-1602-x

Keywords

Navigation