Skip to main content

Advertisement

Log in

Automatic segmentation of left ventricle cavity from short-axis cardiac magnetic resonance images

  • Original Article
  • Published:
Medical & Biological Engineering & Computing Aims and scope Submit manuscript

Abstract

In this paper, a computational framework is proposed to perform a fully automatic segmentation of the left ventricle (LV) cavity from short-axis cardiac magnetic resonance (CMR) images. In the initial phase, the region of interest (ROI) is automatically identified on the first image frame of the CMR slices. This is done by partitioning the image into different regions using a standard fuzzy c-means (FCM) clustering algorithm where the LV region is identified according to its intensity, size and circularity in the image. Next, LV segmentation is performed within the identified ROI by using a novel clustering method that utilizes an objective functional with a dissimilarity measure that incorporates a circular shape function. This circular shape-constrained FCM algorithm is able to differentiate pixels with similar intensity but are located in different regions (e.g. LV cavity and non-LV cavity), thus improving the accuracy of the segmentation even in the presence of papillary muscles. In the final step, the segmented LV cavity is propagated to the adjacent image frame to act as the ROI. The segmentation and ROI propagation are then iteratively executed until the segmentation has been performed for the whole cardiac sequence. Experiment results using the LV Segmentation Challenge validation datasets show that our proposed framework can achieve an average perpendicular distance (APD) shift of 2.23 ± 0.50 mm and the Dice metric (DM) index of 0.89 ± 0.03, which is comparable to the existing cutting edge methods. The added advantage over state of the art is that our approach is fully automatic, does not need manual initialization and does not require a prior trained model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Bezdek JC (1981) Pattern recognition with fuzzy objective function algorithms. Plenum Press, New York

    Book  Google Scholar 

  2. Boudraa AO (1997) Automated detection of the left ventricular region in magnetic resonance images by fuzzy C-means model. Int J Card Imaging 13(4):347–355

    Article  Google Scholar 

  3. Boudraa AO, Mallet JJ, Besson JE, Bouyoucef SE, Champier J (1993) Left ventricle automated detection method in gated isotopic ventriculography using fuzzy clustering. IEEE Trans Med Imaging 12(3):451–465

    Article  CAS  PubMed  Google Scholar 

  4. Bravo A, Medina R (2008) An unsupervised clustering framework for automatic segmentation of left ventricle cavity in human heart angiograms. Comput Med Imaging Gr 32(5):396–408

    Article  Google Scholar 

  5. Cardiovascular diseases (CVDs) Fact Sheets (online), World Health organization (WHO) (2013). http://www.who.int/mediacentre/factsheets/fs317/en/

  6. Casta C, Clarysse P, Schaerer J, Pousin J (2009) Evaluation of the dynamic deformable elastic template model for the segmentation of the heart in MRI sequences. In: MICCAI 2009 workshop on cardiac MR left ventricle segmentation challenge. MIDAS J

  7. Cocosco CA, Netsch T, Sngas J, Bystrov D, Niessen WJ, Viergever MA (2004) Automatic cardiac region-of-interest computation in cine 3d structural MRI. Int Congr Ser 1268:126–1131

    Article  Google Scholar 

  8. Cocosco C, Niessen W, Netsch T, Vonken E, Lund G, Stork A, Viergever M (2008) Automatic image- driven segmentation of the ventricles in cardiac cine MRI. J Magn Reson Imaging 28(2):366–374

    Article  PubMed  Google Scholar 

  9. Constantinides C, Chenoune Y, Kachenoura N, Roullot E, Mousseaux E, Herment A, Frouin F (2009) Semi-automated cardiac segmentation on cine magnetic resonance images using GVF-Snake deformable models. In: MICCAI 2009 workshop on cardiac MR left ventricle segmentation challenge. MIDAS J

  10. Huang S, Liu J, Lee LC, Venkatesh SK, Teo LS, Au C, Nowinski WL (2009) Segmentation of the left ventricle from cine MR images using a comprehensive approach. In: MICCAI 2009 workshop on cardiac MR left ventricle segmentation challenge. MIDAS J

  11. Jolly MP (2008) Automatic recovery of the left ventricular blood pool in cardiac cine MR images. Medical image computing and computer assisted intervention—MICCAI 2008, Lecture notes in computer science 5241: 110–118

  12. Jolly MP (2009) Fully automatic left ventricle segmentation in cardiac cine MR images using registration and minimum surfaces. In: MICCAI 2009 workshop on cardiac MR left ventricle segmentation challenge. MIDAS J

  13. Kang D, Woo J, Slomka PJ, Dey D, Germano G, Jay-Kuo C (2012) Heart chambers and whole heart segmentation techniques: review. SPIE J Electron Imaging 21(1):131–139

    Google Scholar 

  14. Kedenburg G, Cocosco C, Kothe U, Niessen W, Vonken E, Viergever M (2006) Automatic cardiac MRI myocardium segmentation using graphcut. Proc SPIE Med Imaging 6144. doi:10.1117/12.653583

    Article  Google Scholar 

  15. Leung SH, Wang SL, Lau WH (2004) Lip image segmentation using fuzzy clustering incorporating an elliptic shape function. IEEE Trans Image Process 13(1):51–62

    Article  PubMed  Google Scholar 

  16. Lorenzo-Valdés M, Sanchez-Ortiz G, Elkington A, Mohiaddin R, Rueckert D (2004) Segmentation of 4D cardiac MR images using a probabilistic atlas and the EM algorithm. Med Image Anal 8(3):255–265

    Article  PubMed  Google Scholar 

  17. Lu Y, Radau P, Connelly K, Dick A, Wright G (2009) Automatic image-driven segmentation of left ventricle in cardiac cine MRI. In: MICCAI 2009 workshop on cardiac MR left ventricle segmentation challenge. MIDAS J

  18. Lynch M, Ghita O, Whelan PF (2006) Automatic segmentation of the left ventricle cavity and myocardium in MRI data. Comput Biol Med 36(4):389–407

    Article  CAS  PubMed  Google Scholar 

  19. Marak L, Cousty J, Najman L, Talbot H (2009) 4D Morphological segmentation and the MICCAI LV-segmentation grand challenge. In: MICCAI 2009 workshop on cardiac MR left ventricle segmentation challenge. MIDAS J

  20. Mitchell SC, Lelieveldt BP, van der Geest RJ, Bosch HG, Reiber JH, Sonka M (2001) Multistage hybrid active appearance model matching: segmentation of left and right ventricles in cardiac MR images. IEEE Trans Med Imaging 20(5):415–423

    Article  CAS  PubMed  Google Scholar 

  21. O’Brien S, Ghita O, Whelan PF (2009) Segmenting the left ventricle in 3D using a coupled ASM and a learned non-rigid spatial model. In: MICCAI 2009 workshop on cardiac MR left ventricle segmentation challenge. MIDAS J

  22. O’Brien SP, Ghita O, Whelan PF (2011) A novel model-based 3d + time left ventricular segmentation technique. IEEE Trans Med Imag 30(2):461–474

    Article  Google Scholar 

  23. Pednekar A, Kurkure U, Muthupillai R, Flamm S, Kakadiaris IA (2006) Automated left ventricular segmentation in cardiac mri. IEEE Trans Biomed Eng 53(7):1425–1428

    Article  PubMed  Google Scholar 

  24. Petitjean C, Dacher JN (2011) A review of segmentation methods in short axis cardiac MR images. Med Image Anal 15(2):169–184

    Article  PubMed  Google Scholar 

  25. Pluempitiwiriyawej C, Moura J, Wu Y, Ho C (2005) Stacs: new active contour scheme for cardiac mr image segmentation. IEEE Trans Med Imaging 24(5):593–603

    Article  PubMed  Google Scholar 

  26. Radau P, Lu Y, Connelly K, Paul G, Dick AJ, Wright GA (2009) Evaluation framework for algorithms segmenting short axis cardiac MRI. In: MICCAI 2009 workshop on cardiac MR left ventricle segmentation challenge, 2009. http://smial.sri.utoronto.ca/LV_Challenge/Home.html

  27. Rezaee MR, van der Zwet PJ, Lelieveldt BP, van der Geest RJ, Reiber JH (2000) A multiresolution image segmentation technique based on pyramidal segmentation and fuzzy clustering. IEEE Trans Image Process 9(7):1238–1248

    Article  CAS  PubMed  Google Scholar 

  28. van Assen HC, Danilouchkine MG, Dirksen MS, Reiber JH, Lelieveldt BP (2008) A 3-D active shape model driven by fuzzy inference: application to cardiac CT and MR. IEEE Trans Inf Technol Biomed 12(5):595–605

    Article  PubMed  Google Scholar 

  29. Weng J, Singh A, Chiu M (1997) Learning-based ventricle detection from cardiac MR and CT images. IEEE Trans Med Imaging 16(4):378–391

    Article  CAS  PubMed  Google Scholar 

  30. Wijnhout J, Hendriksen D, Van Assen H, Van der Geest R (2009) LV challenge LKEB contribution: fully automated myocardial contour detection. In: MICCAI 2009 workshop on cardiac MR left ventricle segmentation challenge. MIDAS J

  31. Yang X, Yeo SY, Lim C, Su Y, Wan M, Zhong L, Tan RS (2013) A framework for auto-segmentation of left ventricle from magnetic resonance images. In: Proceedings of APCOM&ISCM 2013. http://www.sci-en-tech.com/apcom2013/APCOM2013-Proceedings/PDF_FullPaper/1121_XuleiYang.pdf

  32. Yang X, Yeo SY, Su Y, Lim C, Wan M, Zhong L, Tan RS (2013) Left ventricle segmentation by circular shape constrained clustering algorithm. In: Proceedings of APCOM&ISCM 2013. http://www.sci-en-tech.com/apcom2013/APCOM2013-Proceedings/PDF_FullPaper/1890_XuleiYang.pdf

Download references

Acknowledgment

The authors thank the anonymous reviewers for their insightful comments and valuable suggestions on the earlier version of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xulei Yang.

Appendix: derivation of the partial derivatives of J cs-fcm with respect to i c and j c

Appendix: derivation of the partial derivatives of J cs-fcm with respect to i c and j c

The partial derivative of J cs-fcm (refer to Eq. (6)) with respect to i c is given by

$$\begin{aligned} &\frac{{\partial J_{cs - fcm} }}{{\partial i_{c} }} = 0 \hfill \\ &\Rightarrow \frac{\partial }{{\partial i_{c} }}\left(\sum\limits_{{x_{ij} \in I}} {\sum\limits_{k = 1}^{K} {(u_{k|ij} )^{m} \cdot \hat{d}_{kij} } } \right) = 0 \hfill \\ &\Rightarrow \frac{\partial }{{\partial i_{c} }}\left(\sum\limits_{{x_{ij} \in I}} {\sum\limits_{k = 1}^{K} {(u_{k|ij} )^{m} \alpha f(i,j,s)} } \right) = 0 \hfill \\ &\Rightarrow \frac{\partial }{{\partial i_{c} }}\left(\sum\limits_{{x_{ij} \in I}} {\sum\limits_{k = 1}^{K} {(u_{k|ij} )^{m} \alpha \left[ {\frac{{\sqrt {(i - i_{c} )^{2} + (j - j_{c} )^{2} } }}{r}} \right]^{{\beta_{k} }} } } \right) = 0 \hfill \\ \end{aligned}$$

For LV region, if the values of β = 2, then we have

$$\begin{aligned} &\frac{\partial }{{\partial i_{c} }}\left( {\sum\limits_{{x_{ij} \in I}} {(u_{k|ij} )^{m} \alpha \left[ {\frac{{(i - i_{c} )^{2} + (j - j_{c} )^{2} }}{{r^{2} }}} \right]} } \right) = 0 \hfill \\ &\quad \Rightarrow \frac{\alpha }{{r^{2} }}\left( {\sum\limits_{{x_{ij} \in I}} {(u_{k|ij} )^{m} [ - 2(i - i_{c} )]} } \right) = 0 \hfill \\ & \quad \Rightarrow \sum\limits_{{x_{ij} \in I}} {(u_{k|ij} )^{m} i} = \sum\limits_{{x_{ij} \in I}} {(u_{k|ij} )^{m} i_{c} } \hfill \\ & \quad \Rightarrow i_{c} = \frac{{\sum\nolimits_{{x_{ij} \in I}} {i \cdot u_{k|ij}^{m} } }}{{\sum\nolimits_{{x_{ij} \in I}} {u_{k|ij}^{m} } }} \hfill \\ \end{aligned}$$

Similarly, the partial derivative of J cs-fcm (refer to Eq. (6)) with respect to j c is given by

$$\frac{{\partial J_{\text{cs} - \text{fcm}} }}{{\partial j_{c} }} \Rightarrow j_{c} = \frac{{\sum\nolimits_{{x_{ij} \in I}} {j \cdot u_{k|ij}^{m} } }}{{\sum\nolimits_{{x_{ij} \in I}} {u_{k|ij}^{m} } }}$$

This derives Eq. (8) for the updating of i c and j c .

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, X., Song, Q. & Su, Y. Automatic segmentation of left ventricle cavity from short-axis cardiac magnetic resonance images. Med Biol Eng Comput 55, 1563–1577 (2017). https://doi.org/10.1007/s11517-017-1614-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11517-017-1614-1

Keywords

Navigation