Skip to main content
Log in

Performance improvement of ERP-based brain–computer interface via varied geometric patterns

  • Original Article
  • Published:
Medical & Biological Engineering & Computing Aims and scope Submit manuscript

Abstract

Recently, many studies have been focusing on optimizing the stimulus of an event-related potential (ERP)-based brain–computer interface (BCI). However, little is known about the effectiveness when increasing the stimulus unpredictability. We investigated a new stimulus type of varied geometric pattern where both complexity and unpredictability of the stimulus are increased. The proposed and classical paradigms were compared in within-subject experiments with 16 healthy participants. Results showed that the BCI performance was significantly improved for the proposed paradigm, with an average online written symbol rate increasing by 138% comparing with that of the classical paradigm. Amplitudes of primary ERP components, such as N1, P2a, P2b, N2, were also found to be significantly enhanced with the proposed paradigm. In this paper, a novel ERP BCI paradigm with a new stimulus type of varied geometric pattern is proposed. By jointly increasing the complexity and unpredictability of the stimulus, the performance of an ERP BCI could be considerably improved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Aloise F, Schettini F, Arico P, Salinari S, Babiloni F, Cincotti F (2012) A comparison of classification techniques for a gaze-independent P300-based brain–computer interface. J Neural Eng 9:045012. doi:10.1088/1741-2560/9/4/045012

    Article  CAS  PubMed  Google Scholar 

  2. Ceballos GA, Hernández LF (2015) Non-target adjacent stimuli classification improves performance of classical ERP-based brain computer interface. J Neural Eng 12:026009. doi:10.1088/1741-2560/12/2/026009

    Article  CAS  PubMed  Google Scholar 

  3. Chen L, Jin J, Zhang Y, Wang X, Cichocki A (2015) A survey of the dummy face and human face stimuli used in BCI paradigm. J Neurosci Methods 239:18–27. doi:10.1016/j.jneumeth.2014.10.002

    Article  PubMed  Google Scholar 

  4. Chun MM (1997) Types and tokens in visual processing: a double dissociation between the attentional blink and repetition blindness. J Exp Psychol Hum Percept Perform 23:738–755

    Article  CAS  PubMed  Google Scholar 

  5. Farwell LA, Donchin E (1988) Talking off the top of your head: toward a mental prosthesis utilizing event-related brain potentials. Electroencephalogr Clin Neurophysiol 70:510–523

    Article  CAS  PubMed  Google Scholar 

  6. Fazel-Rezai R (2007) Human error in P300 speller paradigm for brain–computer interface. In: Engineering in Medicine and Biology Society, 2007. EMBS 2007. 29th annual international conference of the IEEE, Lyon, France, 22–26 Aug 2007, pp 2516–2519

  7. Fazel-Rezai R, Allison BZ, Guger C, Sellers EW, Kleih SC, Kubler A (2012) P300 brain computer interface: current challenges and emerging trends. Front Neuroeng 5:14. doi:10.3389/fneng.2012.00014

    Article  PubMed  PubMed Central  Google Scholar 

  8. Fort A, Besle J, Giard M-H, Pernier J (2005) Task-dependent activation latency in human visual extrastriate cortex. Neurosci Lett 379:144–148. doi:10.1016/j.neulet.2004.12.076

    Article  CAS  PubMed  Google Scholar 

  9. Geuze J, Farquhar JDR, Desain P (2012) Dense codes at high speeds: varying stimulus properties to improve visual speller performance. J Neural Eng 9:016009. doi:10.1088/1741-2560/9/1/016009

    Article  PubMed  Google Scholar 

  10. Hill J, Farquhar J, Martens S, Bie mann F, Sch lkopf B (2009) Effects of stimulus type and of error-correcting code design on BCI speller performance. In: Advances in neural information processing systems 21 (NIPS 2008), Vancouver, B.C., Canada. Citeseer

  11. Hong B, Guo F, Liu T, Gao XR, Gao SK (2009) N200-speller using motion-onset visual response. Clin Neurophysiol 120:1658–1666. doi:10.1016/j.clinph.2009.06.026

    Article  PubMed  Google Scholar 

  12. Ito M, Sugata T, Kuwabara H, Wu C, Kojima K (1999) Effects of angularity of the figures with sharp and round corners on visual evoked potentials. Jpn Psychol Res 41:91–101. doi:10.1111/1468-5884.00108

    Article  Google Scholar 

  13. Jin J, Allison BZ, Sellers EW, Brunner C, Horki P, Wang XY, Neuper C (2011) Optimized stimulus presentation patterns for an event-related potential EEG-based brain–computer interface. Med Biol Eng Comput 49:181–191. doi:10.1007/s11517-010-0689-8

    Article  PubMed  Google Scholar 

  14. Jin J, Daly I, Zhang Y, Wang X, Cichocki A (2014) An optimized ERP brain–computer interface based on facial expression changes. J Neural Eng 11:036004. doi:10.1088/1741-2560/11/3/036004

    Article  PubMed  Google Scholar 

  15. Johannes S, Münte TF, Heinze HJ, Mangun GR (1995) Luminance and spatial attention effects on early visual processing. Cogn Brain Res 2:189–205. doi:10.1016/0926-6410(95)90008-X

    Article  CAS  Google Scholar 

  16. Kaufmann T, Kubler A (2014) Beyond maximum speed—a novel two-stimulus paradigm for brain–computer interfaces based on event-related potentials (P300-BCI). J Neural Eng 11:056004. doi:10.1088/1741-2560/11/5/056004

    Article  PubMed  Google Scholar 

  17. Kaufmann T, Schulz SM, Gruenzinger C, Kuebler A (2011) Flashing characters with famous faces improves ERP-based brain–computer interface performance. J Neural Eng 8:056016. doi:10.1088/1741-2560/8/5/056016

    Article  CAS  PubMed  Google Scholar 

  18. Krusienski DJ, Sellers EW, Cabestaing F, Bayoudh S, McFarland DJ, Vaughan TM, Wolpaw JR (2006) A comparison of classification techniques for the P300 Speller. J Neural Eng 3:299–305. doi:10.1088/1741-2560/3/4/007

    Article  PubMed  Google Scholar 

  19. Krusienski DJ, Sellers EW, McFarland DJ, Vaughan TM, Wolpaw JR (2008) Toward enhanced P300 speller performance. J Neurosci Methods 167:15–21. doi:10.1016/j.jneumeth.2007.07.017

    Article  CAS  PubMed  Google Scholar 

  20. Li Y, Bahn S, Nam CS, Lee J (2014) Effects of luminosity contrast and stimulus duration on user performance and preference in a P300-based brain–computer interface. Int J Hum Comput Interact 30:151–163. doi:10.1080/10447318.2013.839903

    Article  CAS  Google Scholar 

  21. Macenka T, Braunstein V, Kober S, Neuper C (2010) The Kanizsa P300-speller: a new way to spell. Poster at the TOBI Workshop ‘Integrating brain–computer interfaces with conventional assistive technology’, Graz

  22. Martens SMM, Hill NJ, Farquhar J, Scholkopf B (2009) Overlap and refractory effects in a brain–computer interface speller based on the visual P300 event-related potential. J Neural Eng. doi:10.1088/1741-2560/6/2/026003

    PubMed  Google Scholar 

  23. Polich J (2007) Updating P300: an integrative theory of P3a and P3b. Clin Neurophysiol 118:2128–2148. doi:10.1016/j.clinph.2007.04.019

    Article  PubMed  PubMed Central  Google Scholar 

  24. Salvaris M, Sepulveda F (2009) Perceptual errors in the Farwell and Donchin matrix speller. In: 2009 4th international IEEE/EMBS conference on neural engineering, Antalya, Turkey, 2009, pp 275–278

  25. Schalk G, McFarland D, Hinterberger T, Birbaumer N, Wolpaw J (2004) BCI 2000: a general-purpose brain–computer interface (BCI) system. IEEE Trans Biomed Eng 51:1034–1043. doi:10.1109/TBME.2004.827072

    Article  PubMed  Google Scholar 

  26. Sellers EW, Krusienski DJ, McFarland DJ, Vaughan TM, Wolpaw JR (2006) A P300 event-related potential brain–computer interface (BCI): the effects of matrix size and inter stimulus interval on performance. Biol Psychol 73:242–252. doi:10.1016/j.biopsycho.2006.04.007

    Article  PubMed  Google Scholar 

  27. Shishkin SL, Ganin IP, Kaplan AY (2011) Event-related potentials in a moving matrix modification of the P300 brain–computer interface paradigm. Neurosci Lett 496:95–99. doi:10.1016/j.neulet.2011.03.089

    Article  CAS  PubMed  Google Scholar 

  28. Takano K, Komatsu T, Hata N, Nakajima Y, Kansaku K (2009) Visual stimuli for the P300 brain–computer interface: a comparison of white/gray and green/blue flicker matrices. Clin Neurophysiol 120:1562–1566. doi:10.1016/j.clinph.2009.06.002

    Article  PubMed  Google Scholar 

  29. Thurlings ME, van Erp JBF, Brouwer A-M, Blankertz B, Werkhoven P (2012) Control-display mapping in brain–computer interfaces. Ergonomics 55:564–580. doi:10.1080/00140139.2012.661085

    Article  PubMed  Google Scholar 

  30. Townsend G, LaPallo BK, Boulay CB, Krusienski DJ, Frye GE, Hauser CK, Schwartz NE, Vaughan TM, Wolpaw JR, Sellers EW (2010) A novel P300-based brain–computer interface stimulus presentation paradigm: moving beyond rows and columns. Clin Neurophysiol 121:1109–1120. doi:10.1016/j.clinph.2010.01.030

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Townsend G, Shanahan J, Ryan DB, Sellers EW (2012) A general P300 brain–computer interface presentation paradigm based on performance guided constraints. Neurosci Lett 531:63–68. doi:10.1016/j.neulet.2012.08.041

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Treder MS, Blankertz B (2010) (C)overt attention and visual speller design in an ERP-based brain–computer interface. Behav Brain Funct. doi:10.1186/1744-9081-6-28

    PubMed  PubMed Central  Google Scholar 

  33. Wolpaw JR, Birbaumer N, McFarland DJ, Pfurtscheller G, Vaughan TM (2002) Brain–computer interfaces for communication and control. Clin Neurophysiol 113:767–791

    Article  PubMed  Google Scholar 

  34. Xu Y, Nakajima Y (2013) A two-level predictive event-related potential-based brain–computer interface. IEEE Trans Biomed Eng 60:2839–2847. doi:10.1109/tbme.2013.2265103

    Article  PubMed  Google Scholar 

  35. Yeom SK, Fazli S, Muller KR, Lee SW (2014) An efficient ERP-based brain–computer interface using random set presentation and face familiarity. PLoS ONE 9:e111157. doi:10.1371/journal.pone.0111157

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was partially funded by the National Natural Science Foundation of China (Grants 81241059, 61172108, and 61139001), the National Key Technology R&D Program of China (Grant 2012BAJ18B06), Key Laboratory of Human–Machine Intelligence-Synergy Systems, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences (2014DP173025), Special Program of Guangdong Frontier and Key Technological Innovation(2016B010108010), Guangdong Technology Project (2016B010125003), and Shenzhen Technology Project (JSGG20160331185256983, JCYJ20140910003939013).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zheng Ma.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, Z., Qiu, T. Performance improvement of ERP-based brain–computer interface via varied geometric patterns. Med Biol Eng Comput 55, 2245–2256 (2017). https://doi.org/10.1007/s11517-017-1671-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11517-017-1671-5

Keywords

Navigation