Skip to main content
Log in

A novel approach to an automated needle insertion in brachytherapy procedures

  • Original Article
  • Published:
Medical & Biological Engineering & Computing Aims and scope Submit manuscript

Abstract

One of the most challenging phases in interstitial brachytherapy is the placement of the needles. In these medical procedures, the needles are inserted inside the tissue to guide the positioning of the radioactive sources. The low-dose-rate radioactive sources are placed inside the tissue permanently, whereas a radioactive source in the high-dose-rate brachytherapy is temporarily placed in the desired positions so that the delivery of the prescription dose to the clinical targets can be achieved. Consequently, the precise needle placement directly influences the radiation dose delivery and the treatment outcomes of patients. Any deviation from the desired position of the radioactive sources can cause a suboptimal dose distribution and inadequate tumor coverage. Therefore, it is of significant importance to develop a robust and sophisticated tool that can perform the automatic needle placement with a high level of accuracy for different medical procedures and conditions. In this study, we propose a novel concept for the automatic needle insertion using a new miniature automated robotic system. The mathematical model of this system was presented in detail, allowing the implementation of the model predictive control that can be used to govern the mechanism. The purpose of this approach was to minimize the lateral components of the generalized reactive force which is responsible for the tissue displacement and, consequently, for the needle deflection. The proposed approach was designed to predict and to compensate for the unmeasured disturbances, such as needle deflection or tissue resistance and reactive force, and it was capable of correcting them without waiting until the effect appears at the output of the system causing the needle deviation from the desired positions. The extensive simulation of the system was presented to evaluate the feasibility of the method and the parameters of interest including displacements, system errors and system responses to the change in the environmental conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Abolhassani N, Patel R, Moallem M (2004) Trajectory generation for robotic needle insertion in soft tissue. In: Proceedings of the 26th IEEE international conference on engineering in medicine and biology (EMBS), San Francisco CA, USA. pp 2730–2733

  2. Abolhassani N, Patel R, Moallem M (2007) Needle insertion into soft tissue: a survey. Med Eng Phys 29(4):413–431

    Article  PubMed  Google Scholar 

  3. Alterovitz R, Goldberg K, Pouliot J, Taschereau R, Hsu IC (2003) Sensorless planning for medical needle insertion procedures. In: Proceedings of the IEEE/RSJ international conference on intelligent robots and systems, Las Vegas, NV, USA. pp 3337–3343

  4. Alterovitz R, Goldberg K, Okamura A (2005) Planning for steerable bevel-tip needle insertion through 2D soft tissue with obstacles. In: Proceedings of IEEE international conference on robotics and automation (ICRA), Barcelona, Spain. pp 1640–1645

  5. Asadian A, Patel RV, Kermani MR (2011) A distributed model for needle-tissue friction in percutaneous interventions. In: Proceedings of the IEEE international conference on robotics and automation (ICRA), Shanghai, China. pp 1896–1901

  6. Buzurovic I et al (2008) Real-time control strategy for collision avoidance and seed deposition in brachytherapy robotic system. Int J Comput Assist Radiol Surg 3:30–34

    Article  Google Scholar 

  7. Buzurovic I, Podder T, Yan K, Hu Y, Valicenti R, Dicker A, Yu Y (2008) Parameter optimization for brachytherapy robotic needle insertion and seed deposition. Med Phys 35(6):2865

    Article  Google Scholar 

  8. Buzurovic I, Podder TK, Yu Y (2008) Force prediction and tracking for image-guided robotic system using neural network approach. In: Proceedings of IEEE biomedical circuits and systems conference (BioCAS), Baltimore MA, USA. pp 41–44

  9. Buzurovic I, Podder TK, Yu Y (2010) Prediction control for brachytherapy robotic system. J Robot 2010(1):1–10

    Google Scholar 

  10. Buzurovic I, Debeljkovic D (2010) A geometric approach to the investigation of the dynamics of constrained robotic systems. In: Proceedings of IEEE international symposium on intelligent systems and informatics (SYSI), Subotica, Serbia. pp 133–138

  11. Buzurovic I, Podder TK, Yu Y (2012) Robotic systems for radiation therapy. In: Dutta A (ed) Robotic systems—applications control and programming. InTech, Rijeka, pp 85–106

    Google Scholar 

  12. Baruh H (1998) Analytical dynamics. McGraw Hill, New York

    Google Scholar 

  13. Cepek J, Chronik BA, Lindner U, Trachtenberg J, Davidson SRH, Bax J, Fenster A (2013) A system for MRI-guided transperineal delivery of needles to the prostate for focal therapy. Med Phys 40(1):1–15

    Article  Google Scholar 

  14. Chentanez N, Alterovitz R, Ritchie D, Cho L, Hauser KK, Goldberg K, O’Brien JF (2009) Interactive simulation of surgical needle insertion and steering. In: Proceedings of ACM SIGGRAPH, vol 28, no 3. pp 88:1–10

  15. Chui CK, Teoh SH, Ong CJ, Anderson JH, Sakuma I (2006) Integrative modeling of liver organ for simulation of flexible needle insertion. In: Proceedings of the 9th international conference on control automation robotics and vision (ICARCV), Singapore. pp 1–6

  16. Crouch JR, Schneider CM, Wainer J, Okamura AM (2005) Velocity-dependent model for needle insertion in soft tissue. In: Proceedings of the 2005 medical image computing and computer-assisted intervention (MICCAI 2005). pp 624–632

  17. DiMaio SP, Salcudean SE (2002) Simulated interactive needle insertion. In: Proceedings of haptic interfaces for virtual environment and teleoperator systems (HAPTICS), Orlando FL, USA. pp 344–351

  18. DiMaio SP, Salcudean SE (2003) Needle insertion modeling and simulation. IEEE Trans Robot Autom 19(5):864–875

    Article  Google Scholar 

  19. DiMaio SP, Salcudean SE (2005) Interactive simulation of needle insertion models. IEEE Trans Biomed Eng 52(7):1167–1179

    Article  PubMed  Google Scholar 

  20. Fichtinger G, Burdette EC, Tanacs A, Patriciu A, Mazilu D, Whitcomb LL, Stoianovic D (2006) Robotically assisted prostate brachytherapy with transrectal ultrasound guidance—phantom experiments. Brachytherapy 5:14–26

    Article  PubMed  Google Scholar 

  21. Holden MS, Ungi T, Sargent D, McGraw RC, Fichtinger G (2012) Surgical motion characterization in simulated needle insertion procedures. In: Proceedings of SPIE medical imaging: image-guided procedures, robotic interventions, and modeling, vol 8316

  22. Khadem M, Fallahi B, Rossa C, Sloboda RS, Usmani N, Tavakoli M (2015) A mechanics-based model for simulation and control of flexible needle insertion in soft tissue. In: Proceedings of the IEEE international conference on robotics and automation (ICRA), Seattle, USA. pp 2264–2269

  23. Kobayashi Y, Suzuki M, Kato A, Hatano M, Konishi K, Hashizume M, Fujie MG (2012) Enhanced targeting in breast tissue using a robotic tissue preloading-based needle insertion system. IEEE Trans Robot Autom 28(3):710–722

    Article  Google Scholar 

  24. Lin A, Trejos AL, Patel RV, Malthaner RA (2008) Robot-assisted minimally invasive brachytherapy for lung cancer. Telesurgery. pp 35–52

  25. McGill CS, Schwartz JA, Moore JZ, McLaughlin PW, Shih AJ (2012) Effects of insertion speed and trocar stiffness on the accuracy of needle position for brachytherapy. Med Phys 39:1811–1817

    Article  PubMed  Google Scholar 

  26. Meirovitch L (2001) Fundamentals of vibrations. McGraw Hill, New York

    Google Scholar 

  27. Meltsner MA, Ferrier NJ, Thomadsen BR (2007) Observations on rotating needle insertions using a brachytherapy robot. Phys Med Biol 52:6027–6037

    Article  CAS  PubMed  Google Scholar 

  28. Misra S, Reed KB, Schafer BW, Ramesh KT, Okamura AM (2010) Mechanics of flexible needles robotically steered through soft tissue. Int J Robot Res 29(13):1640–1660

    Article  CAS  Google Scholar 

  29. Moerland MA, Van den Bosch MR, Lagerburg V, Battermann JJ, Van Vulpen M, Lagendijk JJW (2008) An MRI scanner compatible implant robot for prostate brachytherapy. Brachytherapy 7(2):100

    Article  Google Scholar 

  30. Nath R, Anderson LL, Meli JA, Olch AJ, Stitt JA, Williamson JF (1997) Code of practice for brachytherapy physics: report of the AAPM radiation therapy committee task group No. 56. Med Phys 24(10):1557–1598

    Article  CAS  PubMed  Google Scholar 

  31. O’Leary MD, Simone C, Washio T, Yoshinaka K, Okamura AM (2003) Robotic needle insertion: effects of friction and needle geometry. In: Proceedings of IEEE international conference on robotics and automation (ICRA), Taipei, Taiwan. pp 1774–1780

  32. Okamura AM, Simone C, O’Leary MD (2004) Force modeling for needle insertion into soft tissue. IEEE Trans Biomed Eng 51(10):1707–1716

    Article  PubMed  Google Scholar 

  33. Podder T, Buzurovic I, Yu Y (2010) Multichannel robot for image-guided brachytherapy. In: Proceedings of the 10th IEEE international conference on bioinformatics and bioengineering (BIBE), Philadelphia PA, USA. pp 209–213

  34. Roesthuis RJ, van de Berg NJ, van den Dobbelsteen JJ, Misra S (2015) Modeling and steering of a novel actuated-tip needle through a soft-tissue simulant using Fiber Bragg Grating sensors. In: Proceedings of the IEEE international conference on robotics and automation (ICRA), Seattle, USA. pp 2283–2289

  35. Salcudean SE, Prananta TD, Morris WJ, Spadinger I (2008) Robotic needle guide for prostate brachytherapy. In: IEEE international conference on robotics and automation (ICRA), Pasadena CA, USA. pp 2975–2981

  36. Siebert FA, Hirt M, Niehoff P, Kovács G (2004) Imaging of implant needles for real-time HDR-brachytherapy prostate treatment using biplane ultrasound transducers. Med Phys 36(8):3406–3412

    Article  Google Scholar 

  37. Simone C, Okamura AM (2002) Modeling of needle insertion forces for robot-assisted percutaneous therapy. In: Proceedings of IEEE international conference on robotics and automation (ICRA), Washington DC, USA. pp 2085–2091

  38. Stoianovici D, Cleary K, Patriciu A, Mazilu D, Stanimir A, Craciunoiu N, Watson V, Kavoussi L (2003) AcuBot: a robot for radiological percutaneous interventions. IEEE Trans Robot Autom 19:927–930

    Article  Google Scholar 

  39. Swensen JP, Cowan NJ (2012) Torsional dynamics compensation enhances robotic control of tip-steerable needles. In: Proceedings of the IEEE international conference on robotics and automation (ICRA), Saint Paul, USA. pp 1601–1606

  40. Theodore RJ, Ghosal A (1995) Comparison of the assumed modes and finite element models for flexible multilink manipulators. Int J Robot Res 14(2):91–111

    Article  Google Scholar 

  41. Vrooijink GJ, Abayazid M, Misra S (2013) Real-time three-dimensional flexible needle tracking using two-dimensional ultrasound. In: Proceedings of the IEEE international conference on robotics and automation (ICRA), Karlsruhe, Germany. pp 1688–1693

  42. Wedlick TR, Okamura AM (2012) Characterization of robotic needle insertion and rotation in artificial and ex vivo tissues. In: Proceedings of IEEE/RAS-EMBS international conference on biomedical robotics and biomechatronics (BioRob), Roma, Italy. pp 62–68

  43. Wedlick TR, Lin DJ, Okamura AM (2013) Tissue fixation by suction increases the accuracy of robotic needle insertion. In: Proceedings of IEEE international conference on robotics and automation (ICRA), Karlsruhe, Germany. pp 1694–1699

  44. Wan G, Wei Z, Gardi L, Downey D, Fenster A (2005) Brachytherapy needle deflection evaluation and correction. Med Phys 32(4):902–909

    Article  PubMed  Google Scholar 

  45. Wei Z, Wan G, Gardi L, Mills G, Downey D, Fenster A (2004) Robot-assisted 3D-TRUS guided prostate brachytherapy: system integration and validation. Med Phys 31:539–548

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ivan M. Buzurovic.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Buzurovic, I.M., Salinic, S., Orio, P.F. et al. A novel approach to an automated needle insertion in brachytherapy procedures. Med Biol Eng Comput 56, 273–287 (2018). https://doi.org/10.1007/s11517-017-1686-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11517-017-1686-y

Keywords

Navigation