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Abstract Cardiac resynchronization therapy is not effec-
tive in a variable proportion of heart failure patients. An
accurate knowledge of each patient’s electroanatomical fea-
tures could be helpful to determine the most appropriate
treatment. The goal of this study was to analyze and quan-
tify the sensitivity of left ventricular (LV) activation and the
electrocardiogram (ECG) to changes in 39 parameters used
to tune realistic anatomical-electrophysiological models of
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the heart. Electrical activity in the ventricles was simulated
using a reaction-diffusion equation. To simulate cellular
electrophysiology, the Ten Tusscher-Panfilov 2006 model
was used. Intracardiac electrograms and 12-lead ECGs were
computed by solving the bidomain equation. Parameters
showing the highest sensitivity values were similar in the
six patients studied. QRS complex and LV activation times
were modulated by the sodium current, the cell surface-to-
volume ratio in the LV, and tissue conductivities. The T-
wave was modulated by the calcium and rectifier-potassium
currents, and the cell surface-to-volume ratio in both ven-
tricles. We conclude that homogeneous changes in ionic
currents entail similar effects in all ECG leads, whereas the
effects of changes in tissue properties show larger inter-lead
variability. The effects of parameter variations are highly
consistent between patients and most of the model tuning
could be performed with only ∼10 parameters.

Keywords Computer simulation · ECG morphology ·
Heart failure · Left bundle branch block · Patient-specific
model · Sensitivity analysis

1 Introduction

Heart failure (HF) is one of the most commonly diagnosed
cardiac diseases with an overall incidence approaching one
percent of the population over 65 years of age [39]. A
significant percentage of HF patients presents a prolonged
QRS duration on the 12-lead electrocardiogram (ECG), and
many of them are diagnosed with left bundle branch block
(LBBB), indicating impairment of the cardiac conduction
system specifically in the left ventricle (LV) [14]. Cardiac
resynchronization therapy (CRT) has been shown to reduce
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mortality in most patients with clear LBBB, but its effi-
cacy is reduced in patients with other concomitant electrical
abnormalities, such as right bundle branch block, or diffuse
ventricular conduction disturbances [57]. Better prediction
of CRT efficacy in each particular HF patient through
accurate description of their electrophysiology would help
to avoid unnecessary surgical interventions. Computational
models are a powerful tool to achieve this without ethical
limitations.

Recent studies have shown the usefulness of patient-
specific models to study complex electrophysiological phe-
nomena in healthy and diseased subjects [28, 35]. However,
it is challenging to create multiscale models able to mimic in
a realistic way the entire ventricular electrical behavior from
the subcellular level to the whole heart and body surface lev-
els. Without prior knowledge, the tuning of patient-specific
models is hampered by the high number of parameters
involved, which may differ between patients, creating an
ill-posed problem. Therefore, doing a sensitivity analysis
is meant to quantify to what extent each single parame-
ter affects the output and, finally, to identify those need-
ing accurate tuning. Previous sensitivity analysis studies
in silico have shown that extracellular conduction prop-
erties in the different anatomical structures (blood, lungs,
fat, skeletal muscle...) of a human torso affect in different
ways the electrical potentials measured at the body surface
[5, 19].

In this study, we created realistic models of both the
anatomy and the electrical activation in six HF patients
selected for CRT. The main purpose of the analysis per-
formed in this work was to investigate the relative impor-
tance of myocardial properties in determining both the
activation sequence on the LV endocardial surface and the
ECG morphology in HF patients. For this analysis, indi-
vidual variations of 39 parameters, including intracellular
and extracellular tissue conductivity, and cellular membrane

ionic properties, were evaluated. This set of 39 parameters is
too large to tune a patient-specific model efficiently. There-
fore, a second goal of this study was to delimit the number
of parameters that are required for model tuning.

2 Methods

2.1 Patients

Six patients, with ages ranging from 53 to 79 years, diag-
nosed with HF and suitable for CRT implantation according
to the criteria from the 2011/2013 ESC clinical practice
guidelines [6] were included in this study (Table 1). Four
of the six patients showed clear LBBB electrocardiographic
features according to three widely used sets of criteria:
the criteria used by the European Society of Cardiology
(ESC) [3], the criteria used by the American Heart Asso-
ciation (AHA) [49], and the criteria proposed by Strauss et
al. [48]. The other two patients had non-specific ventricu-
lar conduction disturbances. These six patients underwent
standard 12-lead ECG, cardiac magnetic resonance (CMR)
imaging, electro-mechanical anatomical mapping (NOGA
XP, Biosense Webster), and a coronary angiography proce-
dure. In four of the six patients, the NOGA catheter was
introduced in the left-ventricular (LV) cavity and had con-
tact with the endocardium only, whereas in patients 5 and
6 the electrical activation on both right ventricular (RV)
and LV endocardium as well as the ventricular epicardial
layer underneath the coronary sinus was measured. Details
of the data collection procedure were described in a pre-
vious study [35]. Data for the six patients were collected
between 2012 and 2015 at Cardiocentro Ticino (Lugano,
Switzerland). The patients provided written consent to each
procedure, and the institutional review board approved the
use of the data for research purposes.

Table 1 Selected patient demographics and characteristics

Patient Age Gender Height (m) Weight (kg) LVEF (%) NYHA Etiology QRSd (ms) Morph.

1 72 Female 1.57 75 39 III-IV CAD 139 LBBB

2 69 Male 1.82 75 35 II-III IDCM 179 LBBB

3 79 Male 1.87 94 28 II-III CAD 138 IVCD

4 57 Male 1.60 67 30 II-III CAD 126 IVCD

5 73 Male 1.70 80 24 III-IV IDCM 154 LBBB

6 53 Male 1.78 110 34 II-III IDCM 145 LBBB

LVEF left ventricular ejection fraction, NYHA New York Heart Association Functional Classification, QRSd QRS duration, CAD coronary artery
disease, IDCM idiopathic dilated cardiomyopathy, LBBB left-bundle-branch block, IVCD intraventricular conduction delay
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2.2 Model construction

Anatomical segmentation Segmentation of cardiovascular
structures, lungs, and torso of each patient was performed
based on CMR data obtained with a 3T Siemens Mag-
netom Skyra Scanner equipped with a dedicated cardiac
36-channel coil and a standard body coil for thorax exam-
inations. CMR images were obtained in axial, coronal,
sagittal, cardiac short axis, and cardiac long axis planes,
with a slice thickness between 1 and 8 mm [35]. Late
gadolinium-enhancement images for scar detection were
obtained 10 min after intravenous infusion of gadolinium
(Gadobutrol, 0.2 mmol/kg body weight) using a T-weighted
gradient-echo pulse sequence with a phase-sensitive inver-
sion recovery reconstruction. Semi-automatic segmentation
of ventricular epicardium and endocardium was performed
as described in a previous study [12]. Atrial cavities, aorta,
inferior and superior vena cava, and pulmonary trunk were
manually segmented using custom-made software for trac-
ing contours. Lungs, torso, and ECG electrode locations
were manually traced on ultra-fast volume-interpolated
breath-hold examination (VIBE) images following the
injection of the contrast agent.

Mesh construction The segmentation contours were used
to generate a three-dimensional (3D) mesh of the tissue
boundaries. Mesh construction, i.e., creation of closed sur-
faces representing the different structures, was performed
using the Blender software (The Blender Foundation, Ams-
terdam, The Netherlands). All cardiovascular structures
were joined to define a 3D model of the heart, which
together with the lungs and torso meshes constituted the
complete anatomical model of the patient. In order to extract
the 12-lead ECG from the simulations, nine virtual elec-
trodes were placed on the torso surface at the same locations
as in the real patients: three for the limb leads, and six for
the precordial leads. Both in reality and in the model, the
arm electrodes were placed on the shoulders and the left-leg
electrode was placed near the hip.

Definition of tissue properties From the surface meshes
defining the anatomy, volumetric meshes for the computa-
tions were created. Since the computational code worked
with semi-structured finite-difference meshes, this conver-
sion consisted of simply overlaying the surfaces on a regular
3D grid and assigning tissue types to the grid elements
according to the surfaces in which they were contained.
We used a mesh with 0.2-mm spacing for the heart and 1-
mm spacing for the torso. Passive tissue properties were
associated with grid elements, while model variables and
active properties such as densities of ionic currents were

associated with the nodes of the grid [33]. The node types,
which determine the parameters of the ionic model, were
determined from the element types using a set of rules
that ensure model consistency [33]. The passive properties
were the scalar conductivities (σ ) in longitudinal, transver-
sal and cross-sheet directions, and cell surface-to-volume
ratio (β), i.e., the amount of cellular membrane per unit
volume. For ventricular myocardium, fiber rotation from
endocardial to epicardial layers was included by using a
rule-based method [33]. Four layers were simulated in the
myocardium: epicardium (the most external layer), midmy-
ocardium (middle layer), endocardium (inner layer), and a
thin fast endocardial layer (0.6 mm) to mimic the rapid
propagation occurring due to the Purkinje system in the
endocardium. The first three layers (epicardium, midmy-
ocardium, and endocardium) were differentiated by their
cellular electrophysiology [55]. A full layer was used to
represent the network of Purkinje fibers because the actual
topology cannot be recorded in vivo [27]. This fast endocar-
dial layer was initially assumed to have the same properties
in both ventricles, although previous studies proposed to
differentiate them for the stimulation profile [18, 41].

2.3 Electrophysiological simulation

Cardiac electrophysiology was simulated with a mon-
odomain reaction-diffusion model [33]. Electrophysiolog-
ical activity of ventricular myocytes was simulated using
the Ten Tusscher and Panfilov 2006 membrane model,
which includes transmembrane ionic currents, regulation of
sodium, potassium, and calcium intracellular ion concentra-
tions, and intracellular calcium handling in the sarcoplasmic
reticulum [55]. The ECG was simulated by solving the
extracellular potential φe from the equation

∇ · ([Gi + Ge]∇φe) = −∇ · (Gi∇Vm) (1)

where Gi and Ge are the intracellular and extracellular
conductivity tensor fields, respectively, and Vm is the trans-
membrane potential field [34]. The reaction-diffusion sim-
ulation was run on a mesh with 0.2 mm resolution. The
right-hand side of Eq. 1 was evaluated on this fine mesh
and then projected on the coarser (1 mm) torso mesh, which
included a downsampled model of the heart. φe was solved
on the coarse mesh. The 12-lead ECG was then computed by
extracting the extracellular potential at the electrode locations.

All simulations were performed using propag-5, software
specifically created for cardiac simulation and parallelizable
to utilize supercomputing facilities of the Swiss National
Supercomputing Centre (CSCS) [22, 33]. Most simulations
ran on 1536 cores of a Cray XC40 system. Computation
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times for each single simulation were in the range of 40 to
60 min for 600 ms of simulations of Vm and φe.

2.4 Endocardial activation map and ECG matching

Once the model was complete, parameter adjustments were
iteratively performed in order to match as closely as possible
the electrical activation pattern measured with the NOGA
catheter on the endocardial surface, as well as the mor-
phological features of the clinically obtained ECG. In this
study, electrical activity was only generated in the ventric-
ular myocardium. Therefore, the P-wave was not simulated
and the ECG analysis was focused on the QRS complex
and the T-wave. Figure 1 shows the modeled RV and LV
endocardial surfaces of patient 5 together with the measured
activation times (color-coded) at 396 NOGA recording sites
for this patient. Activation time at a recording site was com-
puted as the time interval between the QRS onset (vertical
red line on the right panel of Fig. 1) and the steepest negative
deflection of the electrogram (blue dot on the right panel of
Fig. 1).

The iterative strategy of parameter adjustments differed
between patients, but in general consisted of (1) finding
the appropriate number and locations of early activation
sites to match the initiation of the LV activation, (2) tun-
ing surface-to-volume ratios, conductivities, and the sodium
current conductance to adjust the conduction velocity in the
myocardium until good matching in the LV activation pat-
tern was obtained, (3) refining adjustments performed in
step 2 to improve matching of the QRS complex, (4) adjust-
ing properties of the L-type calcium current and potassium

currents to match the T-wave. Note that changes in surface-
to-volume ratios, conductivities, and the sodium current
conductance affect conduction velocity, but the way they do
it may be different, so steps (2) and (3) are typically per-
formed simultaneously: changes in surface-to-volume ratios
modify propagation features homogeneously in a specific
part of the ventricles (LV, RV, septum...); changes in con-
ductivities allow us modify propagation features of cardiac
tissue anisotropically in specific directions (longitudinal,
transversal, or cross-sheet); and changes in the sodium cur-
rent conductance modify excitability of cardiac cells based
on their type in both the LV and the RV (endocardial cell,
M cell, or epicardial cell). Tuning was stopped when we
could not find a way to improve it further. Parameters were
changed in physiologically plausible ways, e.g. changes in
β and σ in some patients corresponded to hypertrophied
hearts. A complete list of tuned parameters and tailored
models for the six patients is shown in Supplemental Material.

Figure 2 shows the anatomical models of the six patients
together with leads I, aVL, V5 and V6 of the measured ECG
(red) and simulated ECG (black). These four leads were
chosen due to their importance for LBBB diagnosis. On the
right panels of Fig. 2, correlation between simulated and
measured activation times is shown, including the fitted line
and the correlation coefficient.

2.5 Univariate sensitivity analysis

A quantitative analysis to evaluate the relative importance
for the cardiac electrical activity of individual parameters
in the model was performed. Two groups of parameters

Fig. 1 Modeled endocardial
surfaces of RV and LV for
patient 5 and measured
activation times at NOGA
recording sites in a color scale
(left panel). Example of an
electrogram recorded at the LV
endocardium at the position of
the crosshair in the left panel
(right panel), together with the
time of QRS onset (vertical red
line) and the activation time
(blue dot)
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Fig. 2 Anatomical models of the six patients (left), and corresponding measured (red), and simulated ECG (black) in leads I, aVL, V5, and V6.
Correlation between simulated and measured activation times on the LV endocardium (right)
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were distinguished: those characterizing cellular ionic prop-
erties, and those characterizing passive electrical properties
of the tissue. In the first group, maximum conductances
of all transmembrane ionic currents were included: fast
sodium current (INa), L-type calcium current (ICaL), inward
rectifier potassium current (IK1), transient outward current
(Ito), rapid delayed rectifier potassium current (IKr), slow
delayed rectifier potassium current (IKs), sodium/potassium
pump current (INaK), and sodium/calcium exchanger cur-
rent (INaCa); and also two parameters to modify inactivation
kinetics of ICaL (τf) and activation kinetics of IKs (τxs),
known to be relevant in the adaptation of cell repolariza-
tion to heart rate [36]. These parameters were chosen in
agreement with their importance in determining ventricular
cell properties as shown in a previous study [40]. The sec-
ond group of parameters consisted of cell surface-to-volume
ratio (β), intracellular conductivities (σi), and extracellular
conductivities (σe) in the three directions of propagation:
longitudinal (σil and σel), transversal (σit and σet), and cross-
sheet (σic and σec). They were analyzed separately for each
tissue type: LV, RV, fast endocardial layer (fendo), blood,
skeletal muscle, and lungs. In the rest of this manuscript, the
tissue type will be shown as an additional subscript of β and
σ . In total, changes in 39 parameters were studied.

To quantify the effects of each parameter on particu-
lar ECG markers and ventricular activation, ±30% changes
with respect to the adjusted values of the model for each
patient were simulated, in agreement with the magnitude of
changes (25–30%) reported in previous studies [11, 19, 40,
42, 43].

Ten ECG markers were computed for each of the 12
ECG leads: QRS peak time, absolute value of QRS ampli-
tude with respect to the baseline, QRS area, QRS skewness,
QRS kurtosis, QRS peak-T peak interval, absolute value of
T-wave amplitude with respect to the base line, T peak time,
T-wave skewness, and T-wave kurtosis (examples of some
of these markers are shown in Fig. 3). Furthermore, catheter
positions were projected on the simulated endocardial sur-
face so that simulated activation times and measured acti-
vation times could be compared. Linear regression between
the simulated and measured activation times was performed,
and the slope of the fitted line was also included in the
sensitivity analysis.

The sensitivity of a marker, m, to changes in a particular
parameter, p, was quantified by computing:

Sm,p(%) = mp+30% − mp−30%

0.6mp±0%
100 (2)

where mp+30%, mp−30%, and mp±0% are the values of
the marker m when the parameter p is varied by +30%,
−30% and ±0% (unvaried), respectively, with respect to
their default value in the model. A factor of 0.6 is included to
account for the 60% range of variation. The computed value,

Fig. 3 Example of lead V1 of a clinically measured ECG with five of
the markers included in the sensitivity analysis: QRS peak time, QRS
amplitude, QRS area, T peak time and T-wave amplitude

Sm,p, represents the percentage of variation of the marker
m if the parameter p were varied by 100%, considering the
effect of changes as linear.

A model parameter was considered to be relevant in the
modulation of a marker if the sensitivity value was higher
than 50% of the maximum sensitivity among all parame-
ters for that particular marker. In the ECG markers, this
consideration was taken in each of the 12 leads separately.

3 Results

Figure 4 shows examples of simulations conducted for
the parameter sensitivity analysis. In particular, effects of
changes in INa on the I, aVR, V5 and V6 ECG leads (a), LV
endocardial activation map (b), displayed as a 2D polar dia-
gram showing measured and simulated activation times in a
color scale, and linear fit between simulated and measured
activation times (c) are displayed. In this example, average
computed values for sensitivity to INa changes were highly
relevant for QRS peak time (SQRSpeak,INa = −30.1%),
QRS area (SQRSarea,INa = −35.8%), and QRS morphology
(SQRSskew,INa = −193.6%, SQRSkurt,INa = 11.1%). Regard-
ing the T-wave, the sensitivities of the T-wave amplitude
(STamp,INa = −34%) and the T-wave morphology were
also relevant (STskew,INa = 52.1%, STkurt,INa = 30.5%).
INa changes entailed minimal effects on QRS amplitude
(SQRSamp,INa = 3%), T-wave peak time (STpeak,INa =
−7, 8%), and QRS-T interval (SQRS−T,INa = −1.1%) in this
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Fig. 4 Simulation results. a
ECG for patient 2. Leads I, aVR,
V5, and V6 with INa reduction
by 30% (blue), no changes
(black), and INa increase by 30%
(red). b Polar diagram of the LV
endocardium showing measured
activation times (circles with
time in milliseconds) and
simulated activation times
(colored dots). Apex is marked
with a cross, ‘+’, at the center of
the diagram. c Simulated versus
measured activation times on the
LV endocardium. Correlation
coefficients are shown

a

b c

patient. Furthermore, effects of INa changes on the linear
fitted slope were also notable (SLVslope,INa = −37%). Nega-
tive sensitivity values reflected that an increase in INa led to
a decrease in the analyzed marker, and vice versa.

In general, the parameters showing the highest sensitivity
values were similar in the six patients. Figures 5, 6, and 7
show the parameters whose variations exerted the strongest

alterations on LV activation and ECG markers, respectively,
in the six patients. Figure 5 shows the sensitivity values
(horizontal axis) for each relevant parameter (vertical axis)
and patient (color coded). In Figs. 6 and 7, each horizon-
tal line represents the average sensitivity value ± standard
deviation for the 12 ECG leads for a particular parameter
(vertical axis) and patient (color coded).
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Fig. 5 Significant parameters following sensitivity analysis results for
the slope of the fitted line between simulated and measured activation
times for the six patients (different colors for each patient)

LV activation The slope of the fitted line between simu-
lated and measured activation times was sensitive to sev-
eral parameters, all related to conduction velocity in the
myocardium in both ventricles, as shown in Fig. 5. Effects

were consistent between the six patients, but it was observed
that changes in the tissue properties of the RV only entailed
significant variations in the slope in patient 5 and, to a lesser
extent, patient 1. This was probably due to anatomical par-
ticularities in the septum properties and the early activation
sites of these patients (see Supplemental Material).

QRS-complex morphology As shown in Fig. 6, QRS peak
time was mainly determined by those parameters affecting
conduction velocity in the myocardium such as INa, βLV,
and βRV. Parameters affecting conductivity in the fast endo-
cardial layer, like βfendo, σil,fendo, or σel,fendo, also affect
QRS peak time, but they are not represented in Fig. 6
because they are not so notable. Variations in QRS ampli-
tude were observed when applying changes in conduction
properties in both ventricles, but also changes in some con-
ductivities of the torso: σe,musc (simultaneous changes in the
three directions), and σet,musc (changes only in the transver-
sal direction). Similarly, QRS area was mainly modulated
by changes in conduction in the LV: βLV (with a large vari-
ability between leads), σil,LV and βfendo; but also by INa

and σe,blood. Morphology-related parameters like skewness
and kurtosis were also modulated by the surface-to-volume
ratios in the LV, the RV and the fast endocardial layer, and
by INa and σil,LV. Changes in σe,lung have some effects on
QRS kurtosis in some of the patients, but their effects are not
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as notable as those provoked by the parameters previously
mentioned. Regarding the time interval between the QRS
peak and the peak of the T-wave, the parameters exerting the
strongest influence were those affecting cell repolarization
in the six patients: ICaL, τf, IKs and τxs.

T-wave morphology As shown in Fig. 7, the temporal
delay of the maximum peak of the T-wave, in absolute value,
was mainly determined by ionic changes affecting cell repo-
larization, as occurred with the QRS-T interval: ICaL, τf, IKs

and τxs. The main modulators of the amplitude of the T-
wave peak were the delayed rectifier potassium currents (IKr

and IKs), as well as the sodium current (INa) and conduc-
tion properties in both LV (βLV, σil,LV, σel,LV and βfendo) and
muscle in the torso (σe,musc). T-wave skewness was mainly
determined by the values of βLV, βRV, INa, IKr, and τf. Sim-
ilarly, T-wave kurtosis was modulated by βLV, IKr, and τf.
Interestingly, the biphasic behavior of the T-wave in some
ECG leads in patient 6 led to large variations in both skew-
ness and kurtosis in the sensitivity analysis (see Fig. 7).
Only in this patient, another parameter played a role in the
T-wave morphology (σec,LV).

4 Discussion

The sensitivity analysis performed in this study has shown
that the tuning of very complex patient-specific models
with a very high number of variables can be achieved by

changing only a few parameters. Furthermore, the role of
these key parameters was highly consistent between differ-
ent patients. The goal of the analysis was to estimate the
relative importance of parameters that cannot be observed
clinically and, thus, the lack of counterintuitive results gives
scientific evidence of what scientists would infer by intu-
ition. As stated throughout the paper, about ten parameters
were enough to tune both ECG morphology and LV acti-
vation maps. The low impact of the rest of the parameters
was directly related to their smaller influence on myocar-
dial electrical conduction or cellular action potential, as
shown in previous studies [40]. The tuning procedure is per-
formed manually, but the results presented in this study are
an important step forward to create realistic human models
in a more automated way in the future.

Sensitivity analyses for the study of human cardiac prop-
erties have been previously performed in silico in single
cells or small tissues [7, 11, 20, 40, 42–46]. The influence
of tissue extracellular conductivities on the ECG has been
analyzed in a previous study using a human torso model fit-
ted to a normal volunteer [19]. In this paper, we have gone
a step further and performed a sensitivity analysis in mod-
els specifically tailored to six HF patients undergoing CRT
implantation. We have reproduced the ECG measured at the
body surface and the intracardiac electrical activation map
with high accuracy, although some features like the mor-
phology of the T wave in leads V5 and V6 for patients 1, 3
and 6 presented some differences with the measured ECG.

Previous studies have used patient-specific models for
the study of cardiac properties in order to both provide

Fig. 7 Significant parameters
following sensitivity analysis
results for four ECG markers
related with the T-wave for the
six patients (different colors for
each patient): T-wave peak time,
T-wave amplitude, T-wave
skewness, and T-wave kurtosis.
Average values of the 12 ECG
lead sensitivities represented by
‘x’. Limits of horizontal lines
given by the average values ±
the standard deviation in the 12
leads
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better predictions adapted to each patient and study under-
lying differences between them [1, 15, 23, 25, 29, 35]. The
importance of conductivity parameters in the torso has also
been a matter of study in recent works in both forward and
inverse problems, focusing on different aspects like uncer-
tainty in 3D visualization [8], anatomical segmentation [56],
and realistic ECG simulation [4, 34, 51]. To the best of our
knowledge, the work presented in this study is the first to be
developed with complete models of the human torso, ven-
tricular anatomy, and cellular electrophysiology adapted to
specific patients.

A percentage of HF patients are diagnosed with LBBB.
These patients present abnormally long QRS complexes
with notching in some ECG leads [49]. These features
required particular adjustments in the models, such as mak-
ing the septum less conductive in our simulations. This
finding is in agreement with clinical studies reporting an
augmented transseptal time in these patients which does
not necessarily involve slower propagation on the LV endo-
cardium [2, 38, 50]. Notching was also favored by making
LV cells more hypertrophic than those of the RV by decreas-
ing βLV as occurs in HF patients [16, 24, 32, 35, 57].

Two of the six patients included in this study presented
scar in LV myocardium. These scarred areas were precisely
located with CMR images and simulated in the models as
non-excitable tissue, but the severity of tissue damage could
not be assessed during the procedure in vivo. There could
still be some conduction pathways that allow some electrical
propagation, as observed in clinical data [21, 47]. Neverthe-
less, the models of the two patients matched with notable
accuracy both the ECG and the LV activation pattern, and
the parameters modulating them were very consistent with
those obtained in the other four patients.

4.1 Limitations

The model developed by Ten Tusscher and Panfilov in 2006
used for simulating ventricular cell electrophysiology has
been used in numerous studies because it is one of the most
complete human ventricular action potential models up to
date [26, 33, 36, 37, 55]. Newer electrophysiological models
of ventricular myocytes have been recently developed based
on particular experimental datasets, but their robustness in
reproducing tissue, cellular, and sub-cellular behavior has
been shown to be similar [10, 17, 30]. Furthermore, previous
studies have shown that HF entails remodeling of cellular
electrophysiology in the myocardium [52] and included it
in cellular models [13, 54]. In this study, we used an undis-
eased human ventricular cell model as a reference, since
we could not be sure about either to what extent ventricular
cells had modified their electrophysiology for each patient
or, considering they had modified it, whether their remodel-
ing was homogeneous in both ventricles. Therefore, proper

model tuning for each patient is an essential part of the
model creation procedure. As a result of the choice of a dif-
ferent cell model, quantification of sensitivities could vary,
but qualitative effects of particular parameter changes would
probably remain similar. Moreover, the results of the sensi-
tivity analysis performed in this study could not be directly
extrapolated to patients with healthy hearts or other cardiac
diseases.

Changes applied to the models in the sensitivity anal-
ysis were applied individually and in most cases homo-
geneously. Global sensitivity analysis with simultaneous
changes in model parameters could provide more detailed
information about possible synergistic effects, but the asso-
ciated computational cost with such a large set of parameters
would be extremely large [9, 53]. Furthermore, changes
in parameters applied locally and/or heterogeneously could
help in understanding properties of localized portions
of tissue within the heart (low perfusion areas, scarred
myocardium...). Our models contained various intrinsic het-
erogeneities in ionic parameters related to repolarization.
Based mostly on data from animal hearts, this heterogene-
ity was implemented in subendocardial, midmyocardial, and
subepicardial layers with differences between the LV and
RV [55]. In addition, we used a GKs gradient related to
the activation sequence. A recent study by Opthof et al. in
3 explanted normal human hearts has shown quite differ-
ent patterns of heterogeneity [31]. It cannot be excluded
that some results of our sensitivity analysis would have
been different in the presence of these different baseline
patterns.

The electroanatomical models specifically adapted to
each patient were not guaranteed to be unique since other
combinations of tuned parameters could possibly lead to
matching of similar quality. However, in this study, we
focused on quantifying the variations with respect to the
default model, therefore the mechanisms involved in the
modulation of the ECG and LV activation would not change.
The number of patients used in the analysis was relatively
small, but the high inter-patient consistency of the results
suggests similar results would be obtained with an increased
number of patients.

5 Conclusion

The sensitivity analysis shows that the effects of parame-
ter variations on both ECG and LV activation are highly
consistent between patients with specific anatomies and
prognoses. Changes in ionic properties entail similar effects
in all ECG leads, whereas the effects of changes in tissue
conduction properties may vary between leads. Results of
the analysis suggest that, in addition to the location of early
activation sites, about 10 parameters suffice to create an
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accurate patient-specific model. Alterations in the remain-
ing parameters are not significantly reflected in the ECG or
in the ventricular electrical activation.
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