Skip to main content

Advertisement

Log in

Beat-to-beat estimation of stroke volume using impedance cardiography and artificial neural network

  • Original Article
  • Published:
Medical & Biological Engineering & Computing Aims and scope Submit manuscript

Abstract

Impedance cardiography is a low-cost noninvasive technique, based on monitoring of the thoracic impedance, for estimation of stroke volume (SV). Impedance cardiogram (ICG) is the negative of the first derivative of the impedance signal. A technique for beat-to-beat SV estimation using impedance cardiography and artificial neural network (ANN) is proposed. A three-layer feed-forward ANN with error back-propagation algorithm is optimized by examining the effects of number of neurons in the hidden layer, activation function, training algorithm, and set of input parameters. The input parameters are obtained by automatic detection of the ICG characteristic points, and the target values are obtained by beat-to-beat SV measurements from time-aligned Doppler echocardiogram. The technique is evaluated using an ICG-echocardiography database with recordings from subjects with normal health in the under-rest and post-exercise conditions and from subjects with cardiovascular disorders in the under-rest condition. The proposed technique performed much better than the earlier established equation-based estimations, and it resulted in correlation coefficient of 0.93 for recordings from subjects with cardiovascular disorders. It may be helpful in improving the acceptability of impedance cardiography in clinical practice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Arora D, Chand R, Mehta Y, Trehan N (2007) Cardiac output estimation after off-pump coronary artery bypass: a comparison of two different techniques. Ann Card Anaesth 10(2):132–136

    Article  PubMed  Google Scholar 

  2. Aust PE, Belz GG, Belz G, Koch W (1982) Comparison of impedance cardiography and echocardiography for measurement of stroke volume. Eur J Clin Pharmacol 23(6):475–477

    Article  PubMed  CAS  Google Scholar 

  3. Bagal UR, Pandey PC, Naidu SMM, Hardas SP (2017) Detection of opening and closing of the aortic valve using impedance cardiography and its validation by echocardiography. Biomed Physics Eng Express. https://doi.org/10.1088/2057-1976/aa8bf5

  4. Baumgartner H, Hung J, Bermejo J, Chambers JB, Evangelista A, Griffin BP, Iung B, Otto CM, Pellikka PA, Quiñones M (2009) Echocardiographic assessment of valve stenosis: EAE/ASE recommendations for clinical practice. Eur J Echocardiography 10:1–25

    Article  Google Scholar 

  5. Baura GD (2001) Noninvasive continuous cardiac output monitor US Patent No US 6186955 B1

  6. Bernstein DP, Lemmens HJM (2005) Stroke volume equation for impedance cardiography. Med Biol Eng Comput 43(4):443–450

    Article  PubMed  CAS  Google Scholar 

  7. Bruce RA, Lovejoy FW Jr, Pearson R, PNG Y, Brothers GB, Velasquez T (1949) Normal respiratory and circulatory pathways of adaptation in exercise. J Clin Invest 28(6 Pt 2):1423–1430

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Castor G, Klocke RK, Stoll M, Helms J, Niedermark I (1994) Simultaneous measurement of cardiac output by thermodilution, thoracic electrical bioimpedance and Doppler ultrasound. Br J Anaesth 72(1):133–138

    Article  PubMed  CAS  Google Scholar 

  9. De Maria AN, Raisinghani A (2000) Comparative overview of cardiac output measurement methods: has impedance cardiography come of age? Congest Heart Fail 6(2):60–73

    Article  PubMed  Google Scholar 

  10. Elstad M, Walloe L (2015) Heart rate variability and stroke volume variability to detect central hypovolemia during spontaneous breathing and supported ventilation in young, healthy volunteers. Physiol Meas 36(4):671–681

    Article  PubMed  Google Scholar 

  11. Ermishkin VV, Kolesnikov VA, Lukoshkova EV (2014) Age-dependent and pathologic changes in ICG waveforms resulting from superposition of pre-ejection and ejection waves. Physiol Meas 35(6):943–963

    Article  PubMed  CAS  Google Scholar 

  12. Fellahi JL, Caille V, Charron C, Deschamps-Berger PH, Vieillard-Baron A (2009) Noninvasive assessment of cardiac index in healthy volunteers: a comparison between thoracic impedance cardiography and Doppler echocardiography. Anesth Analg 108(5):1553–1559

    Article  PubMed  Google Scholar 

  13. Fortin J et al (2006) Non-invasive beat-to-beat cardiac output monitoring by an improved method of transthoracic bioimpedance measurement. Comp Biol Med 36(11):1185–1203

    Article  CAS  Google Scholar 

  14. Guyton AC, Hall JE (2006) Textbook of medical physiology, 11th edn. Saunders, Elsevier

    Google Scholar 

  15. Haykin S (1999) Neural networks: a comprehensive foundation, 2nd edn, Prentice Hall, Upper Saddle River

  16. Hoff IE, Hoiseth LO, Hisdal J, Roislien J, Landsverk SA, Kirkeboen KA (2014) Respiratory variations in pulse pressure reflect central hypovolemia during noninvasive positive pressure ventilation. Crit Care Res Pract 2014:9. https://doi.org/10.1155/2014/712728

  17. Holme NL, Rein EB, Elstad M (2016) Cardiac stroke volume variability measured non-invasively by three methods for detection of central hypovolemia in healthy humans. Eur J Appl Physiol 116(11–12):2187–2196

    Article  PubMed  Google Scholar 

  18. Hurwitz BE, Shyu L-Y, Reddy SP, Schneiderman N, Nagel JH (1990) Coherent ensemble averaging techniques for impedance cardiography. In: Proc 3rd Ann IEEE Symp CBMS, Chapel Hill, pp 228–235

  19. Jensen L, Yakimets J, Teo KK (1995) A review of impedance cardiography. Heart & Lung: J Acute Crit Care 24(3):183–193

    Article  CAS  Google Scholar 

  20. Kerr AJ, Simmonds MB, Stewart RA (1998) Influence of heart rate on stroke volume variability in atrial fibrillation in patients with normal and impaired left ventricular function. Am J Cardiol 82(12):1496–1500

    Article  PubMed  CAS  Google Scholar 

  21. Kieback AG, Borges AC, Schink T, Baumann G, Laule M (2010) Impedance cardiography versus invasive measurements of stroke volume index in patients with chronic heart failure. Int J Cardiol 143(2):211–213

    Article  PubMed  Google Scholar 

  22. Kim DW (1989) Detection of physiological events by impedance. Yonsei Med J 30(1):1–11

    Article  PubMed  CAS  Google Scholar 

  23. Kizakevich PN, Teague SM, Nissman DB, Jochem WJ, Niclou R, Sharma MK (1993) Comparative measures of systolic ejection during treadmill exercise by impedance cardiography and Doppler echocardiography. Biol Psychol 36(1–2):51–61

    Article  PubMed  CAS  Google Scholar 

  24. Korhonen I, Koobi T, Turjanmaa V (1999) Beat-to-beat variability of stroke volume measured by whole-body impedance cardiography. Med Biol Eng Comput 37(Suppl.1):61–62

    Google Scholar 

  25. Kubicek WG, Kottke FJ, Ramos MU, Patterson RP, Witsoe DA, Labree JW, Remole W, Layman TE, Schoening H, Garamela JT (1974) The Minnesota impedance cardiograph theory and applications. Biomed Eng 9(9):410–416

    PubMed  CAS  Google Scholar 

  26. Lababidi Z, Ehmke DA, Durnin RE, Leaverton PE, Lauer RM (1970) The first derivative thoracic impedance cardiogram. Circulation 41(4):651–658

    Article  PubMed  CAS  Google Scholar 

  27. Lababidi Z, Ehmke DA, Durnin RE, Leaverton PE, Lauer RM (1971) Evaluation of impedance cardiac output in children. Pediatrics 47(5):870–879

    PubMed  CAS  Google Scholar 

  28. Lewis JF, Kuo LC, Nelson JG, Limacher MC, Quinones MA (1984) Pulsed Doppler echocardiographic determination of stroke volume and cardiac output: clinical validation of two new methods using the apical window. Circulation 70(3):425–431

    Article  PubMed  CAS  Google Scholar 

  29. Liu H, Yambe T, Sasada H, Nanka S, Tanaka S, Nagatomi R, Nitta S (2004) Comparison of heart rate variability and stroke volume variability. Auton Neurosci 116(1–2):69–75

    Article  PubMed  Google Scholar 

  30. Marik PE, Cavallazzi R, Vasu T, Hirani A (2009) Dynamic changes in arterial waveform derived variables and fluid responsiveness in mechanically ventilated patients: a systematic review of the literature. Crit Care Med 37(9):2642–2647

    Article  PubMed  Google Scholar 

  31. Mulavara AP, Timmons WD, Nair MS, Gupta V, Kumar AA, Taylor BC (1998) Electrical impedance cardiography using artificial neural networks. Ann Biomed Eng 26(4):577–583

    Article  PubMed  CAS  Google Scholar 

  32. Naidu SMM, Bagal UR, Pandey PC, Hardas S, Khambete ND (2014) Detection of characterisitc points of impedance cardiogram and validation using Doppler echocardiography. In Proc 11th Ann Conference of the IEEE India Council (Indicon 2014), Pune, India, doi: https://doi.org/10.1109/INDICON.2014.7030596

  33. Nelson N, Janerot-Sjoberg B (2001) Beat-to-beat changes in stroke volume precede the general circulatory effects of mechanical ventilation: a case report. Crit Care 5(1):41–45

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Nocedal J, Wright SJ (1999) Nonlinear least-squares problems. In: Glynn P, Robinson SM (eds) Numerical Optimization. Springer, New York, pp 262–266

    Chapter  Google Scholar 

  35. Northridge DB, Findlay IN, Wilson J, Henderson E, Dargie HJ (1990) Non-invasive determination of cardiac output by Doppler echocardiography and electrical bioimpedance. Br Heart J 63(2):93–97

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Ono T, Miyamura M, Yasuda Y, Ito T, Saito T, Ishiguro T, Yoshizawa M, Yambe T (2004) Beat-to-beat evaluation of systolic time intervals during bicycle exercise using impedance cardiography. Tohoku J Exp Med 203(1):17–29

    Article  PubMed  Google Scholar 

  37. Patterson RP (1989) Fundamentals of impedance cardiography. IEEE Eng Med Biol Mag 8(1):35–38

    Article  PubMed  CAS  Google Scholar 

  38. Peterson GE, Brickner ME, Reimold SC (2003) Transesophageal echocardiography: clinical indications and applications. Circulation 107(19):2398–2402

    Article  PubMed  Google Scholar 

  39. Qu M, Zhang Y, Webster JG, Tompkins WJ (1986) Motion artifact from spot and band electrodes during impedance cardiography. IEEE Trans Biomed Eng 33(11):1029–1036

    Article  PubMed  CAS  Google Scholar 

  40. Scherhag A, Kaden JJ, Kentschke E, Sueselbeck T, Borggrefe M (2005) Comparison of impedance cardiography and thermodilution-derived measurements of stroke volume and cardiac output at rest and during exercise testing. Cardiovasc Drugs Ther 19(2):141–147

    Article  PubMed  CAS  Google Scholar 

  41. Sherwood A, Allen MT, Fahrenberg J, Kelsey RM, Lovallo WR, van Doornen LJ (1990) Methodological guidelines for impedance cardiography. Psychophysiology 27(1):1–23

    Article  PubMed  CAS  Google Scholar 

  42. Sherwood A, McFetridge J, Hutcheson JS (1998) Ambulatory impedance cardiography: a feasibility study. J Appl Physiol 85(6):2365–2369

    Article  PubMed  CAS  Google Scholar 

  43. Siebert J, Drabik P, Lango R, Szyndler K (2004) Stroke volume variability and heart rate power spectrum in relation to posture changes in healthy subjects. Med Sci Monit 10(2):MT31–MT37

    PubMed  Google Scholar 

  44. Sramek B (1984) Noninvasive continuous cardiac output monitor. US Patent 4450527

  45. Summers RL, Shoemaker WC, Peacock WF, Ander DS, Coleman TG (2003) Bench to bedside: electrophysiologic and clinical principles of noninvasive hemodynamic monitoring using impedance cardiography. Acad Emerg Med 10(6):669–680

    Article  PubMed  Google Scholar 

  46. Takada K, Fujinami T, Senda K, Nakayama K, Nakano S (1977) Clinical study of ‘A waves’ (atrial waves) in impedance cardiograms. Am Heart J 94(6):710–717

    Article  PubMed  CAS  Google Scholar 

  47. Tang WH, Tong W (2009) Measuring impedance in congestive heart failure: current options and clinical applications. Am Heart J 157(3):402–411

    Article  PubMed  Google Scholar 

  48. van der Meer NJ, Noordegraaf AV, Kamp O, De Vries PM (1999) Noninvasive measurement of cardiac output: two methods compared in patients with mitral regurgitation. Angiology 50(2):95–101

    Article  PubMed  Google Scholar 

  49. Van De Water JM, Miller TW, Vogel RL, Mount BE, Dalton ML (2003) Impedance cardiography: the next vital sign technology? Chest 123(6):2028–2033

    Article  Google Scholar 

  50. Wang XA, Sun HH, Adamson D, Van de Water JM (1989) An impedance cardiography system: a new design. Ann Biomed Eng 17(5):535–556

    Article  PubMed  CAS  Google Scholar 

  51. Woltjer HH, Bogaard HJ, Scheffer GJ, van der Spoel HI, Huybregts MA, de Vries PM (1996) Standardization of non-invasive impedance cardiography for assessment of stroke volume: comparison with thermodilution. Br J Anaesth 77(6):748–752

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors are thankful to Dr. Niranjan D Khambete and Dr. Vinayak N Desurkar of Deenanath Mangeshkar Hospital and Research Center, Pune, India, for preliminary recordings for this study and many insightful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Prem C. Pandey.

Ethics declarations

All procedures involving human participation were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki Declaration and its later amendments or comparable ethical standards.

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Naidu, S.M.M., Pandey, P.C., Bagal, U.R. et al. Beat-to-beat estimation of stroke volume using impedance cardiography and artificial neural network. Med Biol Eng Comput 56, 1077–1089 (2018). https://doi.org/10.1007/s11517-017-1752-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11517-017-1752-5

Keywords

Navigation