Skip to main content

Advertisement

Log in

Finite element analysis of the wrist in stroke patients: the effects of hand grip

  • Original Article
  • Published:
Medical & Biological Engineering & Computing Aims and scope Submit manuscript

Abstract

The provision of the most suitable rehabilitation treatment for stroke patient remains an ongoing challenge for clinicians. Fully understanding the pathomechanics of the upper limb will allow doctors to assist patients with physiotherapy treatment that will aid in full arm recovery. A biomechanical study was therefore conducted using the finite element (FE) method. A three-dimensional (3D) model of the human wrist was reconstructed using computed tomography (CT)-scanned images. A stroke model was constructed based on pathological problems, i.e. bone density reductions, cartilage wane, and spasticity. The cartilages were reconstructed as per the articulation shapes in the joint, while the ligaments were modelled using linear links. The hand grip condition was mimicked, and the resulting biomechanical characteristics of the stroke and healthy models were compared. Due to the lower thickness of the cartilages, the stroke model reported a higher contact pressure (305 MPa), specifically at the MC1-trapezium. Contrarily, a healthy model reported a contact pressure of 228 MPa. In the context of wrist extension and displacement, the stroke model (0.68° and 5.54 mm, respectively) reported a lower magnitude than the healthy model (0.98° and 9.43 mm, respectively), which agrees with previously reported works. It was therefore concluded that clinicians should take extra care in rehabilitation treatment of wrist movement in order to prevent the occurrence of other complications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Ada L, O'Dwyer N, O'Neill E (2006) Relation between spasticity, weakness and contracture of the elbow flexors and upper limb activity after stroke: an observational study. Disabil Rehabil 28(13-14):891–897. https://doi.org/10.1080/09638280500535165

    Article  PubMed  Google Scholar 

  2. Aprile I., Rabuffetti M, Padua L, DI Sipio E, Simbolotti C, Ferrarin M (2014) Kinematic analysis of the upper limb motor strategies in stroke patients as a tool towards advanced neurorehabilitation strategies: a preliminary study. Biomed Res Int

  3. Arya KN, Pandian S, Verma R, Garg RK (2011) Movement therapy induced neural reorganization and motor recovery in stroke: a review. J Bodyw Mov Ther 15(4):528–537. https://doi.org/10.1016/j.jbmt.2011.01.023

    Article  PubMed  Google Scholar 

  4. Bajuri MN, Abdul Kadir MR, Raman MM, Kamarul T (2012) Mechanical and functional assessment of the wrist affected by rheumatoid arthritis: a finite element analysis. Med Eng Phys 34(9):1294–1302. https://doi.org/10.1016/j.medengphy.2011.12.020

    Article  PubMed  CAS  Google Scholar 

  5. Bajuri MN, Abdul Kadir MR, Yahya MY (2011) Biomechanical analysis on the effect of bone graft of the wrist after arhroplasty. IFMBE Proc 35:773–777. https://doi.org/10.1007/978-3-642-21729-6_189

    Article  Google Scholar 

  6. Beebe JA, Lang CE (2009) Active range of motion predicts upper extremity function 3 months after stroke. Stroke 40(5):1772–1779. https://doi.org/10.1161/STROKEAHA.108.536763

    Article  PubMed  PubMed Central  Google Scholar 

  7. Bettinger PC, Smutz WP, Linscheid RL, Cooney WP, An KN (2000) Material properties of the trapezial and trapeziometacarpal ligaments. J Hand Surg 25(6):1085–1095. https://doi.org/10.1053/jhsu.2000.18487

    Article  CAS  Google Scholar 

  8. Boissy P, Bournonnais D, Carlotti MM, Gravel D, Arsenault BA (1999) Maximal grip force in chronic stroke subjects and its relationship to global upper extremity function. Clin Rehabil 13(4):354–362. https://doi.org/10.1191/026921599676433080

    Article  PubMed  CAS  Google Scholar 

  9. Bosisio MR, Talmant M, Skalli W, Laugier P, Mitton D (2007) Apparent Young’s modulus of human radius using inverse finite element method. J Biomech 9:2022–2028

    Article  Google Scholar 

  10. Brown CP, Nguyen TC, Moody HR, Crawford RW, Oloyede A (2009) Assessment of common hyperelastic constitutive equations for describing normal and osteoarthritis articular cartilage. Proc Inst Mech Eng H J Eng Med 6:643–652

    Article  Google Scholar 

  11. Buma F, Kwakkel G, Ramsey N (2013) Understanding upper limb recovery after stroke. Restor Neurol Neurosci 31:707–722

    PubMed  Google Scholar 

  12. Carrigan SD, Whiteside RA, Pichora DR, Small CF (2003) Development of a three-dimensional finite element model for carpal load transmission in a static neutral posture. Ann Biomed Eng 31(6):718–725. https://doi.org/10.1114/1.1574027

    Article  PubMed  Google Scholar 

  13. Chen X, Zhou L, Zhang Y, Yi D, Liu L, Rao W, Wu Y, Ma D, Liu X, Zhou X-HA, Lin H, Cheng D, Yi D (2014) Risk factors of stroke in Western and Asian countries: a systematic review and meta-analysis of prospective cohort studies. BMC Public Health 14:1–13

    Article  Google Scholar 

  14. Cheng H-YK, Lin C-L, Lin Y-H, Chen AC (2007) Biomechanical evaluation of the modified double-plating fixation for the distal radius fracture. Clin Biomech 22(5):510–517. https://doi.org/10.1016/j.clinbiomech.2006.12.010

    Article  Google Scholar 

  15. Chuang L-L, Wu C-Y, Lin K-C, Lur S-Y (2012) Quantitative mechanical properties of the relaxed biceps and triceps brachii muscles in patients with subacute stroke: a reliability study of the myoton-3 myometer. Stroke Res Treat 2012:1–7. https://doi.org/10.1155/2012/617694

    Article  Google Scholar 

  16. Coburn JC, Upal MA, Crisco JJ (2007) Coordinate systems for the carpal bones of the wrist. J Biomech 40(1):203–209. https://doi.org/10.1016/j.jbiomech.2005.11.015

    Article  PubMed  Google Scholar 

  17. Dennis MS, Lo KM, McDowall M, West T (2002) Fractures after stroke. Frequency, types and associations. Stroke 33(3):728–734. https://doi.org/10.1161/hs0302.103621

    Article  PubMed  CAS  Google Scholar 

  18. Dietz V, Berger W (1984) Interlimb coordination of posture in patients with spastic hemiparesis. Brain 107(3):965–978. https://doi.org/10.1093/brain/107.3.965

    Article  PubMed  Google Scholar 

  19. Ezquerro F, Jimenez S, Perez A, Prado M, de Diego G, Simon A (2007) The influence of wire positioning upon the initial stability of scaphoid fractures fixed using Kirschner wires: a finite element study. Med Eng Phys 29(6):652–660. https://doi.org/10.1016/j.medengphy.2006.08.005

    Article  PubMed  CAS  Google Scholar 

  20. Finlay JB, Repo RU (1979) Energy absorbing ability of articular cartilage during impact. Med Biol Eng Comput 17(3):397–403. https://doi.org/10.1007/BF02443830

    Article  PubMed  CAS  Google Scholar 

  21. Fischli S, Sellens RW, Beek M, Pichora DR (2009) Simulation of extension, radial and ulnar deviation of the wrist with a rigid body spring model. J Biomech 224:477–485

    Google Scholar 

  22. Gislason MK, Nash DH, Nicol A, Kanellopoulus A, Bransby-Zachary M, Hems T, Condon B, Stansfield B (2009) A three dimensional finite element model of maximal grip loading in the human wrist. Proc Inst Mech Eng H J Eng Med 7:849–861

    Article  Google Scholar 

  23. Gislason MK, Nash DH, Stansfield B (2010) Finite element model creation and stability considerations of complex biological articulation. Med Eng Phys 32(5):523–531. https://doi.org/10.1016/j.medengphy.2010.02.015

    Article  PubMed  Google Scholar 

  24. Givissis PK, Antonarakos P, Vafiades VE, Christodoulus AG (2009) Management of posstraumatic arthritis of the wrist with radiolunate fusion enhanced with a sliding autograft: a case report and description of a novel technique. Tech Hand Upper Extrem Surg 13(2):90–93. https://doi.org/10.1097/BTH.0b013e3181960675

    Article  Google Scholar 

  25. Gopura RARC, Bandara DSV, Kiguchi K, Mann GKI (2016) Developments in hardware systems of active upper-limb exoskeleton robots: a review. Robot Auton Syst 75:203–220. https://doi.org/10.1016/j.robot.2015.10.001

    Article  Google Scholar 

  26. Guo S, Zhang F, Wei W, Guo J, Ge W (2013) Development of force analysis-based exoskeleton for the upper limb rehabilitation system. Proc IEEE:285–289

  27. Guo X, Fan Y, Li Z-M (2009) Effects of dividing the transverse carpal ligament on the mechanical behavior of the carpal bones under axial compressive load: a finite element study. Med Eng Phys 2:188–194

    Article  Google Scholar 

  28. Heller A, Wade DT, Wood VA, Sunderland A, Hewer RL, Ward E (1987) Arm function after stroke: measurement and recovery over the first three months. J Neurol Neurosurg Psychiatry 50(6):714–719. https://doi.org/10.1136/jnnp.50.6.714

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. James CB, Uhl TL (2001) A review of articular cartilage pathology and the use of glucosamine sulfate. J Athl Train 36(4):413–419

    PubMed  PubMed Central  CAS  Google Scholar 

  30. Jorgensen L, Engstad T, Jacobsen BK (2001) Bone mineral density in acute stroke patients. Stroke 32(1):47–51. https://doi.org/10.1161/01.STR.32.1.47

    Article  PubMed  CAS  Google Scholar 

  31. Kamper DG, Schmit BD, Rymer WZ (2001) Effect of muscle biomechanics on the quantification of spasticity. Ann Biomed Eng 29(12):1122–1134. https://doi.org/10.1114/1.1424918

    Article  PubMed  CAS  Google Scholar 

  32. Kerin AJ, Wisnom MR, Adams MA (1998) The compressive strength of articular cartilage. Proc Inst Mech Eng H J Eng Med 4:273–280

    Article  Google Scholar 

  33. Kim K, Park D-S, Ko B-Y, Lee J, Yang S-N, Kim J, Song W-K (2011) Arm motion analysis of stroke patients in activities of daily living tasks: a preliminary study. IEEE. Exp Dermatol:1287–1291

  34. Krishna KR, Sridhar I, Ghista DN (2008) Analysis of the helical plate for bone fracture fixation. Injury 39(12):1421–1436. https://doi.org/10.1016/j.injury.2008.04.013

    Article  PubMed  Google Scholar 

  35. Kumar TS, Pandyan AD, Sharma AK (2006) Biomechanical measurement of post-stroke spasticity. Age Ageing 35(4):371–375. https://doi.org/10.1093/ageing/afj084

    Article  PubMed  Google Scholar 

  36. Lang CE, Beebe JA (2007) Relating movement control at 9 upper extremity segments to loss of hand function in people with chronic hemiparesis. Neurorehabil Neural Repair 21(3):279–291. https://doi.org/10.1177/1545968306296964

    Article  PubMed  Google Scholar 

  37. Lazoura O, Groumas N, Antoniadou E, Papadaki PJ, Papadimitriou A, Thriskos P, Fezoulidis I, Vlychou M (2008) Bone mineral density alterations in upper and lower extremities 12 months after stroke measured by peripheral quantitative computed tomography and DXA. J Clin Densitom Assess Skeletal Health 11(4):511–517. https://doi.org/10.1016/j.jocd.2008.05.097

    Article  Google Scholar 

  38. Li C, Zhou Y, Wang H, Liu J, Xiang L (2014) Treatment of unstable thoracolumbar fractures through short segment pedicle screw fixation techniques using pedicle fixation at the level of the fracture: a finite element analysis. PLoS One 9(6):e99156. https://doi.org/10.1371/journal.pone.0099156

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Li Z, Kim JE, Davidson JS, Etheridge BS, Alonso JE, Eberhardt AW (2007) Biomechanical response of the pubic symphysis in lateral pelvic impacts: a finite element study. J Biomech 12:2758–2766

    Article  Google Scholar 

  40. Lo HS, Xie SQ (2012) Exoskeleton robots for upper-limb rehabilitation: state of the art and future prospects. Med Eng Phys 34(3):261–268. https://doi.org/10.1016/j.medengphy.2011.10.004

    Article  PubMed  Google Scholar 

  41. Lum PS, Burgar CG, Kenney DE, Van der Loos HFM (1999) Quantification of force abnormalities during passive and active-assisted upper-limb reaching movements in post-stroke hemiparesis. IEEE Trans Biomed Eng 46(6):652–662. https://doi.org/10.1109/10.764942

    Article  PubMed  CAS  Google Scholar 

  42. M.H. R, Abdul Kadir MR, Murali MR, Kamarul T (2014) Finite element analysis of three commonly used external fixation devices for treating type III pilon fractures. Med Eng Phys 36(10):1322–1330. https://doi.org/10.1016/j.medengphy.2014.05.015

    Article  Google Scholar 

  43. Macleod N.A., Nash DH, Stansfield BW, Bransby-Zachary M, Hems T (2007) Cadaveric analysis of the wrist and forearm load distribution for finite element validation. In: Sixth International Hand and Wrist Biomechanics Symposium, Tainan, Taiwan, Republic of China

  44. Magermans DJ, Chadwick EKJ, Veeger HEJ, van der Helm FCT (2005) Requirement for upper extremity motions during activities of daily living. Clin Biomech 20(6):591–599. https://doi.org/10.1016/j.clinbiomech.2005.02.006

    Article  CAS  Google Scholar 

  45. Materialise (2008) Mimics help manual, vol Version 12.1. Materialise

  46. McGrouther DA. Interactive Hand-Anatomy CD. 1.0 edn. Prima Pictures

  47. Mirbagheri MM, Settle K, Harvey R, Rymer WZ (2007) Neuromuscular abnormalities associated with spasticity of upper extremity muscles in hemiparetic stroke. J Neurophysiol 98(2):629–637. https://doi.org/10.1152/jn.00049.2007

    Article  PubMed  CAS  Google Scholar 

  48. Mirbagheri MM, Tsao C, Rymer WZ (2009) Natural history of neuromuscular properties after stroke: a longitudinal study. J Neurol Neurosurg Psychiatry 80(11):1212–1217. https://doi.org/10.1136/jnnp.2008.155739

    Article  PubMed  CAS  Google Scholar 

  49. Mirbagheri MM, Tsao C, Settle K, Lilaonitkul T, Rymer WZ (2008) Time course of changes in neuromuscular properties following stroke. Conf Proc IEEE Eng Med Biol Soc 1:5097–5100

    Google Scholar 

  50. Nascimento LR, Polese JC, Faria CDCM, Teixeira-Salmela LF (2012) Isometric hand grip strength correlated with isokinetic data of the shoulder stabilizers in individuals with chronic stroke. J Bodyw Mov Ther 16(3):275–280. https://doi.org/10.1016/j.jbmt.2012.01.002

    Article  PubMed  Google Scholar 

  51. Netter FH (2003) Atlas of human anatomy, 3rd edn. ICON Learning System, New York City

    Google Scholar 

  52. Olney SJ, Richards C (1996) Hemiparetic gait following stroke. Part I. Charact Gait Posture 4:136–148

    Article  Google Scholar 

  53. Opheim A, Danielsson A, Murphy MA, Persson HC, Sunnerhagen KS (2014) Upper-limb spasticity during the first year after stroke. Am J Phys Med Rehabil 93(10):884–896. https://doi.org/10.1097/PHM.0000000000000157

    Article  PubMed  Google Scholar 

  54. Patterson RM, Viegas SF, Elder K, Buford WL (1995) Quantification of anatomic, geometric, and load transfer characteristics of the wrist joint. Semin Arthroplast 6:13–19

    CAS  Google Scholar 

  55. Poli P, Morone G, Rosati G, Masiero S (2013) Robotic technologies and rehabilitation: new tools for stroke patient’s therapy. Biomed Res Int 2013:1–8. https://doi.org/10.1155/2013/153872

    Article  Google Scholar 

  56. Powers RK, Marder-Meyer J, Rymer WZ (1988) Quantitative relations between hypertonia and strecth reflex threshold in spastic hemiparesis. Ann Neurol 23(2):115–124. https://doi.org/10.1002/ana.410230203

    Article  PubMed  CAS  Google Scholar 

  57. Ramlee MH, Abdul Kadir MR, Harun H (2014) Three-dimensional modelling and finite element analysis of an ankle external fixator. Adv Mater Res 845:183–188

    Article  Google Scholar 

  58. Ramlee MH, Abdul Kadir MR, Murali MR, Kamarul T (2014) Biomechanical evaluation of two commonly used external fixators in the treatment of open subtalar dislocation—a finite element analysis. Med Eng Phys 36(10):1358–1366. https://doi.org/10.1016/j.medengphy.2014.07.001

    Article  PubMed  Google Scholar 

  59. Ramlee MH, Beng GK (2017) Function and biomechanics of upper limb in post-stroke patients—a systematic review. J Mech Med Biol 0(06):1750099. https://doi.org/10.1142/s0219519417500993

    Article  Google Scholar 

  60. Sato Y (2000) Abnormal bone and calcium metabolism in patients after stroke. Arch Phys Med Rehabil 81(1):117–121. https://doi.org/10.1016/S0003-9993(00)90231-4

    Article  PubMed  CAS  Google Scholar 

  61. Sato Y, Fujimatsu Y, Kikuyama M, Kaji M, Oizumi K (1998) Influence of immobilization on bone mass and bone metabolism in hemiplegic elderly patients with a ling-standing stroke. J Neurol Sci 156(2):205–210. https://doi.org/10.1016/S0022-510X(98)00041-0

    Article  PubMed  CAS  Google Scholar 

  62. Savelberg HH, Kooloos JG, Huiskes R, Kauer JM (1992) Stiffness of the ligaments of the human wrist joints. J Biomech 25(4):369–376. https://doi.org/10.1016/0021-9290(92)90256-Z

    Article  PubMed  CAS  Google Scholar 

  63. Schuind F, Cooney WP, Linscheid RL, An KN, Chao EY (1995) Force and pressure transmission through the normal wrist. A theoretical two-dimensional study in the posteroanterior plane. J Biomech 28(5):587–601. https://doi.org/10.1016/0021-9290(94)00093-J

    Article  PubMed  CAS  Google Scholar 

  64. Starsky AJ, Sangani SG, McGuire JR, Logan B, Schmit BD (2005) Reliability of biomechanical spasticity measurements at the elbow of people poststroke. Arch Phys Med Rehabil 86(8):1648–1654. https://doi.org/10.1016/j.apmr.2005.03.015

    Article  PubMed  Google Scholar 

  65. Sunderland A, Tinson D, Bradley L, Langton H (1989) Arm function after stroke. An evaluation of grip strength as a measure of recovery and a prognostic indicator. J Neurol Neurosurg Psychiatry 52(11):1267–1272. https://doi.org/10.1136/jnnp.52.11.1267

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  66. Tao K, Wang D, Wang C, Wang X, Liu A, Nester CJ, Howard D (2009) An in vivo experimental validation of a computational model of human foot. J Bionic Eng 6(4):387–397. https://doi.org/10.1016/S1672-6529(08)60138-9

    Article  Google Scholar 

  67. Tunc H, Oken O, Kara M, Tiftik T, Dogu B, Unlu Z, Ozcakar L (2012) Ultrasonographic measurement of the femoral cartilage thickness in hemiparetic patients after stroke. Int J Rehabil Res 35(3):203–207. https://doi.org/10.1097/MRR.0b013e3283532736

    Article  PubMed  Google Scholar 

  68. Warlow C, van Gijn J, Dennis M, Wardlaw J, Bamford J, Hankey G, Sandercock P, Rinkel G, Langhorne P, Sudlow C, Rothwell P (2008) Stroke: practical management. Blackwell Publishing, Oxford. https://doi.org/10.1002/9780470696361

    Book  Google Scholar 

  69. Wasay W, Khatri IA, Kaul S (2014) Stroke in South Asian countries. Nat Rev Neurol 10(3):135–143. https://doi.org/10.1038/nrneurol.2014.13

    Article  PubMed  Google Scholar 

  70. Wei W, Guo S, Zhang F, Guo J, Ji Y, Wang Y (2013) A novel upper limb rehabilitation system with hand exoskeleton mechanism. Proc IEEE:285–290

  71. Welmer AK, Widen HL, Sommerfeld DK (2010) Location and severity of spasticity in the first 1-2 weeks and at 3 and 18 months after stroke. Eur J Neurol 17(5):720–725. https://doi.org/10.1111/j.1468-1331.2009.02915.x

    Article  PubMed  Google Scholar 

  72. Wong DW-C, Niu W, Zhang M (2016) Finite element analysis of foot and ankle impact injury: risk evaluation of calcaneus and talus fracture. PLoS One 11(4):e0154435. https://doi.org/10.1371/journal.pone.0154435

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  73. Yalcin S, Kara M, Ozturk GT, Ozcakar L (2016) Ultrasonographic measurements of the metacarpal and talar cartilage thicknesses in hemiplegic patients after stroke. Top Stroke Rehabil 9:1–4

    Google Scholar 

Download references

Funding

The work has been supported by research funding from Centre of Research and Instrumentation Management (CRIM), Arus Perdana Research University Grant (AP-2014-014) under Universiti Kebangsaan Malaysia (UKM), Potential Academic Staff (Grant No.: Q.J130000.2745.02K78) under Universiti Teknologi Malaysia (UTM) and Fundamental Research Grant Scheme (FRGS) (Grant No.: FRGS/1/2016/TK04/UKM/02/5) by Ministry of High Education of Malaysia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muhammad Hanif Ramlee.

Ethics declarations

Ethics statement

The research and computed tomography (CT) dataset obtained institutional approval from Hospital Tengku Ampuan Afzan Kuantan, Pahang, Malaysia, as per the reference number Versi2.0Tarikh15Feb2008. An informed consent form was completed and approved by the Director of Clinical Research Centre, Hospital Tengku Ampuan Afzan Kuantan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ramlee, M.H., Beng, G.K., Bajuri, N. et al. Finite element analysis of the wrist in stroke patients: the effects of hand grip. Med Biol Eng Comput 56, 1161–1171 (2018). https://doi.org/10.1007/s11517-017-1762-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11517-017-1762-3

Keywords

Navigation