Skip to main content
Log in

Computational model to investigate the relative contributions of different neuromuscular properties of tibialis anterior on force generated during ankle dorsiflexion

  • Original Article
  • Published:
Medical & Biological Engineering & Computing Aims and scope Submit manuscript

Abstract

This study describes a new model of the force generated by tibialis anterior muscle with three new features: single-fiber action potential, twitch force, and pennation angle. This model was used to investigate the relative effects and interaction of ten age-associated neuromuscular parameters. Regression analysis (significance level of 0.05) between the neuromuscular properties and corresponding simulated force produced at the footplate was performed. Standardized slope coefficients were computed to rank the effect of the parameters. The results show that reduction in the average firing rate is the reason for the sharp decline in the force and other factors, such as number of muscle fibers, specific force, pennation angle, and innervation ratio. The fast fiber ratio affects the simulated force through two significant interactions. This study has ranked the individual contributions of the neuromuscular factors to muscle strength decline of the TA and identified firing rate decline as the biggest cause followed by decrease in muscle fiber number and specific force. The strategy for strength preservation for the elderly should focus on improving firing rate.

Neuromuscular properties of Tibialis Anterior on force generated during ankle dorsiflexion

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Wu F, Callisaya M, Laslett LL, Wills K, Zhou Y, Jones G, Winzenberg T (2016) Lower limb muscle strength is associated with poor balance in middle-aged women: linear and nonlinear analyses. Osteoporos Int 1–8

  2. Daubney ME, Culham EG (1999) Lower-extremity muscle force and balance performance in adults aged 65 years and older. Phys Ther 79(1177–1185):12

    Google Scholar 

  3. Moreland JD, Richardson JA, Goldsmith CH, Clase CM Muscle weakness and falls in older adults: a systematic review and meta-analysis. J Am Geriatr Soc 52(7):1121–1129, 2004. https://doi.org/10.1111/j.1532-5415.2004.52310.x

  4. Robinson B, Gordon J, Wallentine S, Visio M (2004) Relationship between lower-extremity joint torque and the risk for falls in a group of community dwelling older adults. Physiother Theory Pract 20(3):155–173. https://doi.org/10.1080/09593980490487500

    Article  Google Scholar 

  5. Clark BC, Manini TM (2008) Sarcopenia ≠ dynapenia. J Gerontol Ser A Biol Med Sci 63(8):829–834. https://doi.org/10.1093/gerona/63.8.829

    Article  Google Scholar 

  6. Mitchell WK, Williams J, Atherton P, Larvin M, Lund J, Narici M (2012) Sarcopenia, dynapenia, and the impact of advancing age on human skeletal muscle size and strength; a quantitative review. Front Physiol 3, doi:https://doi.org/10.3389/fphys.2012.00260

  7. Morse CI, Thom JM, Birch KM, Narici MV (2005) Changes in triceps surae muscle architecture with sarcopenia. Acta Physiol Scand 183(3):291–298. https://doi.org/10.1111/j.1365-201X.2004.01404.x

    Article  PubMed  CAS  Google Scholar 

  8. Deschenes MR (2011) Motor unit and neuromuscular junction remodeling with aging. Curr Aging Sci 4(3):209–220. https://doi.org/10.2174/1874609811104030209

    Article  PubMed  CAS  Google Scholar 

  9. Kaya RD, Nakazawa M, Hoffman RL, Clark BC (2013) Interrelationship between muscle strength, motor units, and aging. Exp Gerontol 48(9):920–925. https://doi.org/10.1016/j.exger.2013.06.008

    Article  PubMed  PubMed Central  Google Scholar 

  10. Kwan P (2013) Sarcopenia, a neurogenic syndrome? J Aging Res

  11. Lexell J, Taylor CC, Sjöström M (1988) What is the cause of the ageing atrophy?: total number, size and proportion of different fiber types studied in whole vastus lateralis muscle from 15- to 83-year-old men. J Neurol Sci 84(2-3):275–294. https://doi.org/10.1016/0022-510X(88)90132-3

    Article  PubMed  CAS  Google Scholar 

  12. Rowan SL, Rygiel K, Purves-Smith FM, Solbak NM, Turnbull DM, Hepple RT (2012) Denervation causes fiber atrophy and myosin heavy chain co-expression in senescent skeletal muscle. PLoS One 7(1):e29082. https://doi.org/10.1371/journal.pone.0029082

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Klass M, Baudry S, Duchateau J (2008) Age-related decline in rate of torque development is accompanied by lower maximal motor unit discharge frequency during fast contractions. J Appl Physiol 104(3):739–746. https://doi.org/10.1152/japplphysiol.00550.2007

    Article  PubMed  Google Scholar 

  14. Manini TM, Clark BC (2011) Dynapenia and aging: an update. J Gerontol A Biol Sci Med Sci. glr010

  15. Vandervoort AA, McComas AJ (1986) Contractile changes in opposing muscles of the human ankle joint with aging. J Appl Physiol 61(1):361–367. https://doi.org/10.1152/jappl.1986.61.1.361

    Article  PubMed  CAS  Google Scholar 

  16. Coggan AR, Spina RJ, King DS, Rogers MA, Brown M, Nemeth PM, Holloszy JO (1992) Histochemical and enzymatic comparison of the gastrocnemius muscle of young and elderly men and women. J Gerontol 47(3):B71–B76. https://doi.org/10.1093/geronj/47.3.B71

    Article  PubMed  CAS  Google Scholar 

  17. Connelly DM, Rice CL, Roos MR, Vandervoort AA (1999) Motor unit firing rates and contractile properties in tibialis anterior of young and old men. J Appl Physiol 87(2):843–852. https://doi.org/10.1152/jappl.1999.87.2.843

    Article  PubMed  CAS  Google Scholar 

  18. Hasson CJ, Caldwell GE (2012) Effects of age on mechanical properties of dorsiflexor and plantarflexor muscles. Ann Biomed Eng 40(5):1088–1101. https://doi.org/10.1007/s10439-011-0481-4

    Article  PubMed  Google Scholar 

  19. Kent-Braun JA, Ng AV (1999) Specific strength and voluntary muscle activation in young and elderly women and men. J Appl Physiol 87(1):22–29. https://doi.org/10.1152/jappl.1999.87.1.22

    Article  PubMed  CAS  Google Scholar 

  20. Klitgaard H, Ausoni S, Damiani E (1989) Sarcoplasmic reticulum of human skeletal muscle: age-related changes and effect of training. Acta Physiol Scand 137(1):23–31. https://doi.org/10.1111/j.1748-1716.1989.tb08717.x

    Article  PubMed  CAS  Google Scholar 

  21. McKinnon NB, Montero-Odasso M, Doherty TJ (2015) Motor unit loss is accompanied by decreased peak muscle power in the lower limb of older adults. Exp Gerontol 70:111–118. https://doi.org/10.1016/j.exger.2015.07.007

    Article  PubMed  Google Scholar 

  22. McNeil CJ, Vandervoort AA, Rice CL (2007) Peripheral impairments cause a progressive age-related loss of strength and velocity-dependent power in the dorsiflexors. J Appl Physiol 102(5):1962–1968. https://doi.org/10.1152/japplphysiol.01166.2006

    Article  PubMed  Google Scholar 

  23. Morse CI, Thom JM, Reeves ND, Birch KM, Narici MV (2005) In vivo physiological cross-sectional area and specific force are reduced in the gastrocnemius of elderly men. J Appl Physiol 99(3):1050–1055. https://doi.org/10.1152/japplphysiol.01186.2004

    Article  PubMed  Google Scholar 

  24. Pae M, Suke JE, Gapeyeva H (2000) Age-related differences in twitch contractile properties of plantarflexor muscles in women. Acta Physiol Scand 170:51–57

    Article  Google Scholar 

  25. Patten C, Kamen G (2000) Adaptations in motor unit discharge activity with force control training in young and older human adults. Eur J Appl Physiol 83(2-3):128–143. https://doi.org/10.1007/s004210000271

    Article  PubMed  CAS  Google Scholar 

  26. Reid KF, Pasha E, Doros G, Clark DJ, Patten C, Phillips EM, Frontera WR, Fielding RA (2014) Longitudinal decline of lower extremity muscle power in healthy and mobility-limited older adults: influence of muscle mass, strength, composition, neuromuscular activation and single fiber contractile properties. Eur J Appl Physiol 114(1):29–39. https://doi.org/10.1007/s00421-013-2728-2

    Article  PubMed  PubMed Central  Google Scholar 

  27. Welsh SJ, Dinenno DV, Tracy BL (2007) Variability of quadriceps femoris motor neuron discharge and muscle force in human aging. Exp Brain Res 179(2):219–233. https://doi.org/10.1007/s00221-006-0785-z

    Article  PubMed  Google Scholar 

  28. Zampieri S, Pietrangelo L, Loefler S, Fruhmann H, Vogelauer M, Burggraf S, Pond A, Grim-Stieger M, Cvecka J, Sedliak M, Tirpáková V, Mayr W, Sarabon N, Rossini K, Barberi L, De Rossi M, Romanello V, Boncompagni S, Musarò A, Sandri M, Protasi F, Carraro U, Kern H (2015) Lifelong physical exercise delays age-associated skeletal muscle decline. J Gerontol Ser A Biol Med Sci 70(2):163–173. https://doi.org/10.1093/gerona/glu006

    Article  CAS  Google Scholar 

  29. Clark BC, Law TD, Hong SL (2015) Editorial on “from brain to body: the impact of nervous system declines on muscle performance in aging”. Front Aging Neurosci 7, doi:https://doi.org/10.3389/fnagi.2015.00066

  30. Webber SC, Porter MM, Gardiner PF (2009) Modeling age-related neuromuscular changes in humans. Appl Physiol Nutr Metab 34(4):732–744. https://doi.org/10.1139/H09-052

    Article  PubMed  Google Scholar 

  31. Barry BK, Pascoe MA, Jesunathadas M, Enoka RM (2007) Rate coding is compressed but variability is unaltered for motor units in a hand muscle of old adults. J Neurophysiol 97(5):3206–3218. https://doi.org/10.1152/jn.01280.2006

    Article  PubMed  Google Scholar 

  32. Contessa P, Luca CJD (2013) Neural control of muscle force: indications from a simulation model. J Neurophysiol 109(6):1548–1570. https://doi.org/10.1152/jn.00237.2012

    Article  PubMed  Google Scholar 

  33. D'Antona G, Pellegrino MA, Adami R, Rossi R, Carlizzi CN, Canepari M, Saltin B, Bottinelli R (2003) The effect of ageing and immobilization on structure and function of human skeletal muscle fibres. J Physiol 552(2):499–511. https://doi.org/10.1113/jphysiol.2003.046276

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Hasson CJ, Miller RH, Caldwell GE (2011) Contractile and elastic ankle joint muscular properties in young and older adults. PLoS One 6(1):e15953. https://doi.org/10.1371/journal.pone.0015953

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Hawkins DA (1990) A cellular-based muscle model: formulation and application for studying muscle mechanics. University of California-Davis

  36. Moritz CT, Barry BK, Pascoe MA, Enoka RM (2005) Discharge rate variability influences the variation in force fluctuations across the working range of a hand muscle. J Neurophysiol 93(5):2449–2459. https://doi.org/10.1152/jn.01122.2004

    Article  PubMed  Google Scholar 

  37. Romero F, Alonso F (2016) A comparison among different Hill-type contraction dynamics formulations for muscle force estimation. Mech Sci 7:19

    Article  Google Scholar 

  38. Thelen DG (2003) Adjustment of muscle mechanics model parameters to simulate dynamic contractions in older adults. J Biomech Eng 125(1):70–77. https://doi.org/10.1115/1.1531112

    Article  PubMed  Google Scholar 

  39. Wexler AS, Ding J, Binder-Macleod SA (1997) A mathematical model that predicts skeletal muscle force. IEEE Trans Biomed Eng 44:337–348

    Article  PubMed  CAS  Google Scholar 

  40. Fuglevand AJ, Winter DA, Patla AE (1993) Models of recruitment and rate coding organization in motor-unit pools. J Neurophysiol 70(6):2470–2488. https://doi.org/10.1152/jn.1993.70.6.2470

    Article  PubMed  CAS  Google Scholar 

  41. Siddiqi A, Kumar D, Arjunan SP (2014) A model for generating surface EMG signal of m. tibialis anterior. In: 2014 36th Annual international conference of the IEEE engineering in medicine and biology society, p. 106–109

  42. Cutsem MV, Feiereisen P, Duchateau J, Hainaut K (1997) Mechanical properties and behaviour of motor units in the tibialis anterior during voluntary contractions. Can J Appl Physiol 22(6):585–597. https://doi.org/10.1139/h97-038

    Article  PubMed  Google Scholar 

  43. Fling BW, Knight CA, Kamen G (2009) Relationships between motor unit size and recruitment threshold in older adults: implications for size principle. Exp Brain Res 197(2):125–133. https://doi.org/10.1007/s00221-009-1898-y

    Article  PubMed  Google Scholar 

  44. McNeil CJ, Doherty TJ, Stashuk DW, Rice CL (2005) Motor unit number estimates in the tibialis anterior muscle of young, old, and very old men. Muscle Nerve 31(4):461–467. https://doi.org/10.1002/mus.20276

    Article  PubMed  Google Scholar 

  45. Trojaborg W, Kaufmann P, Gooch CL (2002) Motor unit estimate number in the anterior tibial muscle: normative data versus findings in critically ill patients in intensive care units. J Clin Neuromuscul Dis 3(4):139–142. https://doi.org/10.1097/00131402-200206000-00001

    Article  PubMed  Google Scholar 

  46. Edstrom L, Nystrom B (1969) Histochemical types and sizes of fibres in normal human muscles. Acta Neurol Scand 45(257–269):3

    Google Scholar 

  47. Henriksson-Larsén KB, Lexell J, Sjöström M (1983) Distribution of different fibre types in human skeletal muscles. I. Method for the preparation and analysis of cross-sections of whole tibialis anterior. Histochem J 15(2):167–178. https://doi.org/10.1007/BF01042285

    Article  PubMed  Google Scholar 

  48. Johnson MA, Polgar J, Weightman D, Appleton D (1973) Data on the distribution of fibre types in thirty-six human muscles: an autopsy study. J Neurol Sci 18(1):111–129. https://doi.org/10.1016/0022-510X(73)90023-3

    Article  PubMed  CAS  Google Scholar 

  49. Jakobsson F, Borg K, Edström L, Grimby L (1988) Use of motor units in relation to muscle fiber type and size in man. Muscle Nerve 11(12):1211–1218. https://doi.org/10.1002/mus.880111205

    Article  PubMed  CAS  Google Scholar 

  50. Maganaris CN (2001) Force–length characteristics of in vivo human skeletal muscle. Acta Physiol Scand 172(4):279–285. https://doi.org/10.1046/j.1365-201x.2001.00799.x

    Article  PubMed  CAS  Google Scholar 

  51. Simoneau EM, Longo S, Seynnes OR, Narici MV (2012) Human muscle fascicle behavior in agonist and antagonist isometric contractions. Muscle Nerve 45(1):92–99. https://doi.org/10.1002/mus.22257

    Article  PubMed  Google Scholar 

  52. Wickiewicz TL, Roy RR, Powell PL, Edgerton VR (1983) Muscle architecture of the human lower limb. Clin Orthop Relat Res 179:275–283

    Article  Google Scholar 

  53. Maganaris CN, Baltzopoulos V, Ball D, Sargeant AJ (2001) In vivo specific tension of human skeletal muscle. J Appl Physiol 90(3):865–872. https://doi.org/10.1152/jappl.2001.90.3.865

    Article  PubMed  CAS  Google Scholar 

  54. Deschenes MR (2004) Effects of aging on muscle fibre type and size. Sports Med 34(12):809–824. https://doi.org/10.2165/00007256-200434120-00002

    Article  PubMed  Google Scholar 

  55. Huxley AF (1957) Muscle structure and theories of contraction. Prog Biophys Biophys Chem 7:255–318

    Article  PubMed  CAS  Google Scholar 

  56. De Luca CJ, Hostage EC (2010) Relationship between firing rate and recruitment threshold of motoneurons in voluntary isometric contractions. J Neurophysiol 104(2):1034–1046. https://doi.org/10.1152/jn.01018.2009

    Article  PubMed  PubMed Central  Google Scholar 

  57. Poosapadi Arjunan S, Kumar DK, Wheeler K, Shimada H, Siddiqi A (2016) Effect of number of motor units and muscle fibre type on surface electromyogram. Med Biol Eng Comput 54(4):575–582. https://doi.org/10.1007/s11517-015-1344-1

    Article  PubMed  Google Scholar 

  58. Merletti R, Lo Conte L, Avignone E, Guglielminotti P (1999) Modeling of surface myoelectric signals. I. Model implementation. IEEE Trans Biomed Eng 46:810–820

    Article  PubMed  CAS  Google Scholar 

  59. Mesin L (2006) Simulation of surface EMG signals for a multilayer volume conductor with triangular model of the muscle tissue. IEEE Trans Biomed Eng 53:2177–2184

    Article  PubMed  Google Scholar 

  60. Mesin L, Farina D (2004) Simulation of surface EMG signals generated by muscle tissues with inhomogeneity due to fiber pinnation. IEEE Trans Biomed Eng 51:1521–1529

    Article  PubMed  Google Scholar 

  61. Stegeman DF, Blok JH, Hermens HJ, Roeleveld K (2000) Surface EMG models: properties and applications. J Electromyogr Kinesiol 10(5):313–326. https://doi.org/10.1016/S1050-6411(00)00023-7

    Article  PubMed  CAS  Google Scholar 

  62. Mesin L, Merletti R, Vieira TM (2011) Insights gained into the interpretation of surface electromyograms from the gastrocnemius muscles: a simulation study. J Biomech 44(6):1096–1103. https://doi.org/10.1016/j.jbiomech.2011.01.031

    Article  PubMed  Google Scholar 

  63. Dimitrov GV, Dimitrova NA (1998) Precise and fast calculation of the motor unit potentials detected by a point and rectangular plate electrode. Med Eng Phys 20(5):374–381. https://doi.org/10.1016/S1350-4533(09)00014-9

    Article  PubMed  CAS  Google Scholar 

  64. Siddiqi AM (2016) Relative contributions of neuromuscular factors to muscle strength decline with age. RMIT University, Melbourne

    Google Scholar 

  65. Jesunathadas M, Klass M, Duchateau J, Enoka RM (2012) Discharge properties of motor units during steady isometric contractions performed with the dorsiflexor muscles. J Appl Physiol 112(11):1897–1905. https://doi.org/10.1152/japplphysiol.01372.2011

    Article  PubMed  PubMed Central  Google Scholar 

  66. Gydikov A, Kosarov D (1974) Influence of various factors on the length of the summated depolarized area of the muscle fibres in voluntary activating of motor units and electrical stimulation. Electromyogr Clin Neurophysiol 14(1):79–93

    PubMed  CAS  Google Scholar 

  67. Henneman E (1985) The size-principle: a deterministic output emerges from a set of probabilistic connections. J Exp Biol 115(1):105–112

    PubMed  CAS  Google Scholar 

  68. Morris M, Osborne D, Hill K, Kendig H, Lundgren-Lindquist B, Browning C, Reid J (2004) Predisposing factors for occasional and multiple falls in older Australians who live at home. Aust J Physiother 50(3):153–159. https://doi.org/10.1016/S0004-9514(14)60153-7

    Article  PubMed  Google Scholar 

  69. Narici M, Landoni L, Minetti A (1992) Assessment of human knee extensor muscles stress from in vivo physiological cross-sectional area and strength measurements. Eur J Appl Physiol 65(5):438–444. https://doi.org/10.1007/BF00243511

    Article  CAS  Google Scholar 

  70. Sacks RD, Roy RR (1982) Architecture of the hind limb muscles of cats: functional significance. J Morphol 173(2):185–195. https://doi.org/10.1002/jmor.1051730206

    Article  PubMed  CAS  Google Scholar 

  71. Kukulka CG, Clamann HP (1981) Comparison of the recruitment and discharge properties of motor units in human brachial biceps and adductor pollicis during isometric contractions. Brain Res 219(1):45–55. https://doi.org/10.1016/0006-8993(81)90266-3

    Article  PubMed  CAS  Google Scholar 

  72. Milner-Brown H, Stein RB, Yemm R (1973) Changes in firing rate of human motor units during linearly changing voluntary contractions. J Physiol 230(2):371–390. https://doi.org/10.1113/jphysiol.1973.sp010193

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  73. Moritani T, Muro M (1987) Motor unit activity and surface electromyogram power spectrum during increasing force of contraction. Eur J Appl Physiol Occup Physiol 56(3):260–265. https://doi.org/10.1007/BF00690890

    Article  PubMed  CAS  Google Scholar 

  74. Raikova R, Aladjov H (2003) The influence of the way the muscle force is modeled on the predicted results obtained by solving indeterminate problems for a fast elbow flexion. Comput Methods Biomech Biomed Eng 6(3):181–196. https://doi.org/10.1080/1025584031000149097

    Article  Google Scholar 

  75. Umberger BR, Gerritsen KGM, Martin PE (2003) A Model of human muscle energy expenditure. Comput Methods Biomech Biomed Eng 6(2):99–111. https://doi.org/10.1080/1025584031000091678

    Article  Google Scholar 

  76. Gondin J, Guette M, Ballay Y, Martin A (2006) Neural and muscular changes to detraining after electrostimulation training. Eur J Appl Physiol 97(2):165–173. https://doi.org/10.1007/s00421-006-0159-z

    Article  PubMed  Google Scholar 

  77. Häkkinen K, Komi PV (1983) Electromyographic changes during strength training and detraining. Med Sci Sports Exerc 16:455–460

    Google Scholar 

  78. Narici MV, Roi GS, Landoni L, Minetti AE, Cerretelli P (1989) Changes in force, cross-sectional area and neural activation during strength training and detraining of the human quadriceps. Eur J Appl Physiol Occup Physiol 59(4):310–319. https://doi.org/10.1007/BF02388334

    Article  PubMed  CAS  Google Scholar 

  79. Manini TM, Hong SL, Clark BC (2013) Aging and muscle: a neuron’s perspective. Curr Opin Clin Nutr Metab Care 16(1):21–26. https://doi.org/10.1097/MCO.0b013e32835b5880

    Article  PubMed  CAS  Google Scholar 

  80. Oliviero A, Profice P, Tonali PA, Pilato F, Saturno E, Dileone M, Ranieri F, Di Lazzaro V (2006) Effects of aging on motor cortex excitability. Neurosci Res 55(1):74–77. https://doi.org/10.1016/j.neures.2006.02.002

    Article  PubMed  CAS  Google Scholar 

  81. Peinemann A, Lehner C, Conrad B, Siebner HR (2001) Age-related decrease in paired-pulse intracortical inhibition in the human primary motor cortex. Neurosci Lett 313(1-2):33–36. https://doi.org/10.1016/S0304-3940(01)02239-X

    Article  PubMed  CAS  Google Scholar 

  82. Rossini P, Desiato M, Caramia M (1992) Age-related changes of motor evoked potentials in healthy humans: non-invasive evaluation of central and peripheral motor tracts excitability and conductivity. Brain Res 593(1):14–19. https://doi.org/10.1016/0006-8993(92)91256-E

    Article  PubMed  CAS  Google Scholar 

  83. Sale MV, Lavender AP, Opie GM, Nordstrom MA, Semmler JG (2016) Increased intracortical inhibition in elderly adults with anterior–posterior current flow: a TMS study. Clin Neurophysiol 127(1):635–640. https://doi.org/10.1016/j.clinph.2015.04.062

    Article  PubMed  Google Scholar 

  84. Dalton BH, McNeil CJ, Doherty TJ, Rice CL (2008) Age-related reductions in the estimated numbers of motor units are minimal in the human soleus. Muscle Nerve 38(3):1108–1115. https://doi.org/10.1002/mus.20984

    Article  PubMed  Google Scholar 

  85. Klein CS, Rice CL, Marsh GD (2001) Normalized force, activation, and coactivation in the arm muscles of young and old men. J Appl Physiol 91(3):1341–1349. https://doi.org/10.1152/jappl.2001.91.3.1341

    Article  PubMed  CAS  Google Scholar 

  86. Krivickas LS, Dorer DJ, Ochala J, Frontera WR (2011) Relationship between force and size in human single muscle fibres. Exp Physiol 96(5):539–547. https://doi.org/10.1113/expphysiol.2010.055269

    Article  PubMed  Google Scholar 

  87. Narici MV, Maganaris CN (2006) Adaptability of elderly human muscles and tendons to increased loading. J Anat 208(4):433–443. https://doi.org/10.1111/j.1469-7580.2006.00548.x

    Article  PubMed  PubMed Central  Google Scholar 

  88. Jesunathadas M, Rudroff T, Enoka RM (2010) Changes in muscle fascicles of tibialis anterior during anisometric contractions are not associated with motor-output variability of the ankle dorsiflexors in young and old adults. Eur J Appl Physiol 110(6):1175–1186. https://doi.org/10.1007/s00421-010-1606-4

    Article  PubMed  Google Scholar 

  89. Renganathan M, Messi M, Delbono O (1997) Dihydropyridine receptor-ryanodine receptor uncoupling in aged skeletal muscle. J Membr Biol 157(3):247–253. https://doi.org/10.1007/s002329900233

    Article  PubMed  CAS  Google Scholar 

  90. Delmonico MJ, Harris TB, Visser M, Park SW, Conroy MB, Velasquez-Mieyer P, Boudreau R, Manini TM, Nevitt M, Newman AB (2009) Longitudinal study of muscle strength, quality, and adipose tissue infiltration. Am J Clin Nutr 90(6):1579–1585. https://doi.org/10.3945/ajcn.2009.28047

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sridhar Poosapadi Arjunan.

Ethics declarations

Competing interests

The authors declare that they have no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Siddiqi, A., Poosapadi Arjunan, S. & Kumar, D.K. Computational model to investigate the relative contributions of different neuromuscular properties of tibialis anterior on force generated during ankle dorsiflexion. Med Biol Eng Comput 56, 1413–1423 (2018). https://doi.org/10.1007/s11517-018-1788-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11517-018-1788-1

Keywords

Navigation