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Abstract: This paper applies a nonparametric modelling method with kernel-based regularization
to estimate the carbon dioxide production during jogging exercises. The kernel
selection and regularization strategies have been discussed; several commonly used
kernels are compared regarding the goodness-of-fit, sensitivity and stability. Based on
that, the most appropriate kernel is then selected for the construction of the
regularization term. Both the onset and offset of the jogging exercises are investigated.
We compare the identified nonparametric models, which include both impulse
response models and step response models for the two periods, as well as the
relationship between oxygen consumption and carbon dioxide production. The result
statistically indicates that the steady state gain of the carbon dioxide production in the
onset of exercise is bigger than that in the offset while the response time of both onset
and offset are similar. Compared with oxygen consumption, the response speed of
carbon dioxide production is slightly slower in both onset and offset period while its
steady state gains are similar for both periods. The effectiveness of the kernel-based
method for the dynamic modelling of cardiorespiratory response to exercise is also well
demonstrated.

Response to Reviewers: We would like to thank the Associate Editor and the Reviewers for their thorough
evaluation of our work. The above paper has been revised thoroughly, taking into
account all the comments from the Reviewers and the Associate Editor.

Responses to Associate Editor:
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Your revised manuscript has been reviewed by two of the original referees. One of the
reviewers do not find that the original concerns have been satisfactorily addressed
during revision, so please make a serious effort to address these concerns as well as
to reduce the number of figures (which is very high).

Response:  We appreciate the Associate Editor’s valuable comments. We revised the
paper earnestly according to the Reviewer’s comments and reduced the number of
figures from 23 to 17.

Responses to Reviewer #2:

1) The authors has addressed my questions properly. I think the manuscript can be
accepted.

Response:  We appreciate the reviewer for his/her great efforts and supportive
feedback.

Responses to Reviewer #3:

1) The purpose of this work is to study the cardiorespiratory response to treadmill
exercise. The proposed method includes a nonparametric model associated with a
kernel-based regularization. After the selection of the appropriate kernel, the onset and
offset responses to exercise were analyzed and compared. The general purpose of the
article is interesting and the methodology is nice and appropriate in this context.

Response: We are happy that the reviewer is generally satisfied with our work.

2) However, the paper is a confusing and can’t be published without important
modifications. Moreover, the main objectives of the paper are not clear. I don’t think
that the organization of the paper is good. In fact, there are still some results in both
method and discussion sections. Moreover, the article contains too much figures (23
figures for the article). The authors should better select the figures and results that are
the most significant.

Although the article structure has been revised, the main objectives of the paper are
still not clear. There are still some results in the method section. The article is generally
long and verbose. The high number of figures (23) induces confusion. Moreover, most
of my previous review comments have not been addressed:

Response:  Thanks for giving us another chance to modify the paper.
According to the reviewer’s comment, we re-organized the structure of the paper.
Especially, all the results have been moved to “Results” section, and the most
significant figures and results have been selected and included in the revised version
based on the reviewer’s suggestions.
In summary, we have made the following exchanges in the revised version:
(1)We have moved the results of simulation and kernel selection to the “Results”
section (see Subsection 3.1).
(2)We have added the (statistic) analysis part in the “Method” section (see Subsection
2.4).
(3)We moved the comparison figures in the “Discussion” section to “Results” section in
Subsection 3.4 and 3.5.
(4)We have reduced the number of figures by deleting figures 7, 8, 16, 21, 22, 23 in the
last version.
(5)We have made the pictures close to their relevant explanation by reducing the size.
(6)We have simplified verbose sentences about the physiological background in the
“Discussion” section and re-organized the structure “Discussion” section. Please see
the red colour marked part of the revised version.
(7)The objects were illustrated in the contribution part in the “Introduction” section and
the “Discussion” section.

3) Introduction: The sentence “However, in some cases, the stimulation of the system
is insufficient, which is often the case when human is the “system” under investigation
as the signals exerting to a human should be well selected to ensure their safety” is
difficult to understand. Please rephrase or give a better explanation.
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Response: This sentence has been revised as follows:

“However, the signals that exert on a human body should be well selected to ensure
the safety. Due to this reason, when the human being is involved in an experiment, the
input signals are often limited in both intensity and duration, which leads to insufficient
stimulation for the modelling of the system.”

4) The authors declare that “The input of the Speed-to-VCO2 system is a step
function» Could you better justify this assumption? Have you some information from
the treadmill to justify?

Response:  To identify a complex dynamic system, such as the response of the human
cardio-respiratory system, the pseudo-random binary sequence (PRBS) input is often
expected to stimulate the system well. However, for this experiment, as the exerciser
must carry a K4b2 gas analyser, if we use a PRBS signal or other complex signals as
input, which requires the treadmill changing speed frequently, most subjects will be
difficult to follow. And it is also impossible for the treadmill to jump to certain speed
instantly. Hence, we apply simple step function as the input signal here.
To do so, we developed an automated treadmill system, which can control treadmill
speed in real time to generate a relatively accurate step input signal to the exerciser’s
cardio-respiratory system.

To identify the dynamic response for both onset and offset exercises, the profiles of the
treadmill speed is set as several step functions as shown in Fig. 1. The onset period is
from 3 km/h to 8 km/h, and the offset is from 8 km/h to 3 km/h. These two phases can
be considered as two steps.

To be clearer, we modify this sentence as “The inputs of the Speed-to-VCO2 system
are step functions (i.e., the onset period is from 3 km/h to 8 km/h, and the offset is from
8 km/h to 3 km/h). The exercise protocol of the treadmill speed is illustrated as in Fig.
1.”.

5) Section 2.3: “A is the steady state gain and B is the time constant”: Why don’t you
used the usual notation for a gain and a time constant K and T? You should provide
the units for the gain and the time constant.

Response:

We appreciate the reviewer’s valuable suggestion. We have changed the symbols of
the steady state gain and time constant accordingly, i.e., “A and B” have been changed
as “K and T”.

It should be noted that the character “K” was used as the symbol of kernels in the
previous version. To avoid confusion, in the revised version, we used “P” to represent
the kernel function.

During simulation, we treat both K and T as constants without units. In experiments,
the unit for K is [ (ml/min/kg)/(km/hour)] and the unit for T is [second].

6) The authors give values for the kernel parameters. The choice of these values
should be better justify and the units of each parameter should be added. Moreover,
the authors should discuss their influence of the results.

Response:  We tune the parameter partially according to the suggestions from [16] as
follows:
•For the ‘‘DI’’ kernel, further assume that 0.7 ≤ λ < 1.
•For the ‘‘DC’’ kernel, further assume that 0.72 ≤ λ < 1 and −0.99 ≤ ρ ≤ 0.99.
•For the ‘‘SS’’ kernel, further assume that 0.9 ≤ λ < 1 (λ is as the same as β in our
paper).

Finally, we selected the best parameters based on the simulation results (e.g., we
choose ρ=0.999 for DC kernel). The kernel parameters are constants without units.
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The influence of the parameters is shown in Fig. 4. This figure presents the identified
Impulse Responses with different kernel parameters. It also shows the parameter
sensitivity of each kernel. Based on that, the Stable Spline kernel is selected due to its
goodness-of-fit and less sensitivity with parameters. Please see Fig. 4 in the revised
version for details.

[16] Tianshi Chen and Lennart Ljung. Implementation of algorithms for tuning
parameters in regularized least squares problems in system identification. Automatica,
49(7):2213–2220, 2013.

7) Concerning the goodness-of-fit of the estimated output, you should clearly explain
how it is calculated and give the units. Moreover, the SS kernel was chosen but you
should precise if there are significant differences between the fit associated with each
kernel (see fig. 6)?

Response:  The goodness-of-fit of the estimated output is calculated by fit ratio
NRMSE (normalised root mean square error) and the details are given in Equation
(12). The unit of the fit ratio is 1. Also, in the revised version, we updated the average
fitness and box-plot according to the latest simulation results.

To show the significance, we add the following part in Page 6-7 to illustrate the
significant differences of the goodness-of-fit of the kernels:
“Thus, we applied T-test to verify the significant difference of the goodness-of-fit. All the
results show that p < 0.0001 which indicate they are of significant difference. That
means the influence of different kernels on the results is significant.”

8) I believe that this section contains results. The authors should better separate
methods and results. Method section should only include a description of evaluation
methodology and not all results.

Response:  We agree with the reviewer. Accordingly, we move the results of simulation
and kernel selection to the “Results” section in Subsection 3.1.

9) Section 2.2: Have you included men and women in your study? Have you find any
gender differences in the cardiorespiratory response to exercise?

Response:  All the subjects are male in to minimize the gender influence on the results.
To avoid ambiguity, we added “male” in the sentence on Page 5 as follows:
 “20 untrained healthy male subjects were asked to run on the treadmill.”

10) Fig. 2/Fig. 3: I don’t understand how you obtained these simulated signals? You
should better describe the model used to obtained these simulated signals.

Response:  The description of the simulated signals about Fig.2 has been given in
Subsection 2.2 Kernel Selection in Page 5:

“A step function is selected as the input  , and the simulated output   is polluted by a
Gaussian white noise with 1  Signal-Noise Ratio (SNR). The sampling time is selected
as   second. The input   and output   of the simulated system are shown in Fig. 2”

The description of Fig.3 has been given in Subsection 3.1 in Page 6:

“At first, we use the LS method without kernel technique to perform the identification.
The identified impulse response (IR) of the system is shown in Fig. 3.”

We also modified the position of figures in this section to make them clearer.

11) Section 3.1: “In this part, we selected the data from t1 = 500s to t2 = 900s”: Why
not from t1 = 500s to t2 = 900s? Equation 12: Maybe, you should only precise that
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N=400?

Response:  Apologies for the typos. We revised the manuscript accordingly with details
as follows.

In Page 7, at the beginning of Subsection 3.2: “In this part, we selected the data from
to   (see Fig. 1) for the modelling of onset impulse response.”.

In Page 8, at the beginning of Subsection 3.3: “We select the data from  =901s to
=1300s for the modelling of offset period.”.

Also, in the revised version, we modified the limits in Equation (13) from 0-399 to 1-
400.

12) Fig. 7: How did you obtain this signal? It is an acquisition or an estimation?

Response:  Fig. 7 in the previous version is the protocol of speed signal. This protocol
can be accurately implemented by using the developed automated treadmill system,
i.e., we can control the treadmill speed to follow the profile in real time. Although this
signal has appeared in Fig. 1 together with the measured VCO2, in the previous
version, to emphasize this exercise protocol, it is separately provided in Fig. 7.

In the revised version, to save space, we delete this figure.

13) Fig. 8: In my opinion, figure 8 does not bring any information.

Response:  We agree with the reviewer. To save space, in the revised version, we also
delete this figure since this typical experimental scenario is imaginable.

14) Fig. 9/ Fig. 10/ Fig. 11/ Fig. 12: I don’t understand if the model was fitted for each
subject or for a mean subject. Do these curves correspond to average estimations for
all subjects? Please provide a more precise description of the method used to obtain
these curves.

Response:  The dotted lines in these figures represent the identified impulse response
model by using each participant’s measurement data and the bold line stands for the
identified impulse response model by using the averaged value of the 20 participants.

Accordingly, we modified the explanation in Subsection 3.2 and 3.3 to clarify what the
dotted lines and the bold line represent.

15) Generally, I’m not convinced that a first order model is not appropriate because the
dynamic of the response seem very closed to a RC charging curve. You should
absolutely justify this point.

Response:  Most previous studies applied parametric modelling approaches for the
estimation of cardiorespiratory response to exercise. However, the complexity of the
parametric model is bounded even if the amount of data is unbounded. This makes
them not very flexible.

In this paper, we applied a nonparametric model (impulse response model) based
identification method for VCO2 and VO2 modelling. Unlike the estimation of a
parametric model (e.g., transfer function), the estimation of impulse response does not
need to consider the order of the system. The major advantage of using a
nonparametric modelling approach is its flexibility. That is, the amount of information
that the nonparametric model can capture as the amount of data grows.

On the other hand, as the human cardiorespiratory system is complex, the dynamics of
running speed to VO2 consumption during exercise might have different characteristics
for each individual exerciser. To describe this dynamic system, researchers proposed
several different models already. The first order system is one of the most commonly
used models, but not the only one. It is quite hard to identify the exact order when the
input is a single step signal and the observation is with large noise. The step response
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of a second or higher order system could look like a first-order system if the high order
system can be factorized as several first order subsystems. As non-parametric
modelling approach does not need to identify the order of the system explicitly, its
advantage is obvious.

Also, in previous dynamic modelling, the stimulation of system is often limited, and the
previous method cannot correctly estimate a high-order system without enough
stimulation, especially for the identification of impulse response. Therefore, for most
researches, the system was approximated as first order. However, due to the individual
difference, it is likely that some people are quite different from others.

Hence, instead of spending lots of effort on exploring the structure of the system, we
proposed this nonparametric modelling method to provide a more accurate estimation.

16) Section 4: The discussion includes some parts that should included in the method
section (description of the statistical analysis…) and others parts that should be placed
in the results (especially all figures).

Response:  We appreciate the valuable advice. Some parts of discussions including
the description of the statistical analysis in the discussion section have been moved to
the “Method” section (see Subsection 2.4 in the revised version). Also, we have moved
the comparison figures in the “Discussion” section to the “Results” section (see
Subsections 3.4 and 3.5 in the revised version).

17) “In other words, the results of our study show that for the same speed change,
human body exhales out more CO2 in onset than offset.” Could you provide an
accurate physiological explanation?

Response:  In the revised version, we have illustrated this claim in the “Discussion”
section (see Subsection 4.1) and added a sentence after this claim to refer the readers
to the physiological explanation in the “Discussion” section:

“As we observed, for the same speed change, the carbon dioxide consumption in
onset is more than offset. The reason behind this observation is the fact that ATP is the
“molecular currency” for intracellular energy transfer, storage as well as transfer
chemistry energy. With the increasing of the exercise intensity, the human body has to
consume more ATP in onset period than that of in offset period. Human body provides
ATP and produces carbon dioxide by respiration. Thus, the participants produce more
carbon dioxide in onset period than offset for the same speed changing rate. This
observation is also related to the “oxygen debt” [4][32][34], which is first proposed by
Hill [3]. The “debt” occurs during the onset period because the stored credits are
expended.

[3] Archibald V Hill, CNH Long, and H Lupton.  Muscular exercise, lactic acid, and the
supply and utilisation of oxygen.   Proceedings of the Royal Society of London. Series
B, Containing Papers of a Biological Character, 97(681):84--138, 1924.
[4]  Wasserman K, Whipp BJ, Koyl SN, Beaver WL.  Anaerobic threshold and
respiratory gas exchange during exercise.   J appl Physiol, 35(82):236, 1973.
[32] Yi Zhang, Azzam Haddad, Steven W Su, Branko G Celler, Aaron J Coutts, Rob
Duffield, Cheyne E Donges, and Hung T Nguyen.  An equivalent circuit model for onset
and offset exercise response.   Biomedical engineering online, 13(1):145, 2014.
[34]. Nicholas M Beltz, Fabiano T Amorim, Ann L Gibson, Jeffrey M Janot, Len Kravitz,
Christine M Mermier, Nathan Cole, Terence A Moriarty, Tony P Nunez, Sam Trigg, et
al. Hemodynamic and metabolic responses to self-paced and ramp-graded exercise
testing protocols. Applied Physiology, Nutrition, and Metabolism, (999):1–8, 2018.

18) Fig. 14: I don’t see the interest of the figure? Please explain.

Response:  In the previous version, Fig. 14 showed the normalized and averaged
estimation of VdCO2 for both onset and offset periods to compare the difference
between the two periods. The corresponding explanation has been presented in the
first paragraph of Subsection 3.4 in Page 8. We also re-arranged the position of the
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picture to make it clear.

“To see this difference in the response speed, we normalized the averaged estimation
of VdCO2 in onset and offset period, which is shown in Fig. 11.”

19) Fig. 16/ Fig. 21: I don’t know if these figures are necessary. Maybe, you should
only provide the statistical analysis.

Response:  In the previous version, these two figures together with Fig. 22 illustrated
whether the Gain and Time index follow the normal distribution or not. We choose
Paired T-test if it follows and chooses Rank Sum test if not. However, to save space,
we have deleted Fig. 16, 21, 22 and provided the statistical analysis by words and
tables (see Subsection 3.4 and Table 2-4).

20) “Moreover, we calculate the correlation coefficient between the estimated VdCO2
and VdO2”. Why do you choose to calculate the correlation coefficient here? The
objectives of the paper are not clear at all.

Response:  Apart from the similarity of the dynamic responses indicated in the
identified impulse response models, we calculate the correlation coefficient between
the estimated VdCO2 and VdO2 to investigate the correlation relationship between
them. It may be helpful if they are highly correlated to some extent. For example, for
the gas collection during the experiment, it is often the case that the assessment of the
exhaled gas components (with more carbon dioxide) is simpler than that of the inhaled
gas (with more oxygen), i.e., the measurement of carbon dioxide production is more
convenient than that of oxygen consumption. Then, if it is necessary, the measurement
of VdO2 can be bypassed, but estimated by using VdCO2 instead to reduce the cost.

21) Section 4.3: The physiological explanation should be based on precise and recent
references to justify all assumptions. Generally the discussion section is very
confusing.

Response:  We have comprehensively re-organized the structure of the “Discussion”
section and interpreted the results with the physiological explanations. The literature
we referred are the original literature with the similar physiological explanation that may
be a long time ago but well cited in the society. In the revised version, we add some
recent references, which has cited these papers and closely related to the explanations
(e.g., [26] [28] [32]).

“In this section, we attempt to explain the results from a physiological point of view.
The explanation about the similarity and difference between onset vs. offset and
VdCO2 vs. VdO2 are illustrated respectively in Subsection 4.1 and 4.2.

Aerobic respiration produces carbon dioxide and water, resulting in the releasing of
energy and generating large amounts of Adenosine Triphosphate (ATP, also known as
adenine nucleoside triphosphate). ATP transports chemical energy within cells for
metabolism. Under normal circumstances, only considering the case of glucose for
energy, in aerobic breathing, the product is carbon dioxide and water. The total
reaction of aerobic respiration is shown in Eq.(14). The concept of Respiratory Quotient
[31] (referred as RQ or R, the VCO2 divided by VO2 in local tissue) was presented,
which is equal to   when glucose is the only available source for energy according to
Eq.(14). Every 1 litre of oxygen will produce 1 litre of carbon dioxide, and the volume
ratio of carbon dioxide and oxygen is 1[29][30].

Based on the above background about aerobic respiration, the results and their
physiological explanations are summarized as follows.

4.1  Comparison between Onset and Offset Period of VdCO2

• The Time Index of VdCO2 in onset is similar to offset and the gain of VdCO2 in onset
is bigger than offset.
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As we observed, for the same speed change, the carbon dioxide consumption in onset
is more than offset. The reason behind this observation is the fact that ATP is the
''molecular currency" for intracellular energy transfer, storage as well as transfer
chemistry energy. With the increasing of the exercise intensity, the human body has to
consume more ATP in onset period than that of in offset period. Human body provides
ATP and produces carbon dioxide by respiration. Thus, the participants produce more
carbon dioxide in onset period than offset for the same speed changing rate. This
observation is also related to the ''oxygen debt" [4] [32][34], which is first proposed by
Hill [3]. The ''debt'' occurs during the onset period because the stored credits are
expended.

4.2  Comparison of VdCO2 and VdO2

• Similarity: The VdCO2 and VdO2 are significantly related and the gains of VdCO2
and VdO2 are similar in both periods.

The similar gain and correlation coefficient of VdCO2 and VdO2 also work in concert
with the respiration formula as Eq. (14).

• Difference: The Time Index of VdCO2 is bigger than that of VdO2  in both periods so
the VdO2  shows a quicker response speed.

The different Time Index means a different gas delivery rate. The Fig. 3 in Williams's
research [33] shows the same result. For their half-time constant, oxygen consumption
is smaller than carbon dioxide elimination. This is also related to the O2 debt and
excess CO2 and respond to the Subsection 4.1. The Fig. 2 of Karlman's research [4]
also shows that the R is over 1 which is same to our results and explain it by a buffer
system. ”

 [3]  Archibald V Hill, CNH Long, and H Lupton.  Muscular exercise, lactic acid, and the
supply and utilisation of oxygen.   Proceedings of the Royal Society of London. Series
B, Containing Papers of a Biological Character, 97(681):84--138, 1924.
[4]  Wasserman K, Whipp BJ, Koyl SN, Beaver WL.  Anaerobic threshold and
respiratory gas exchange during exercise.   J appl Physiol, 35(82):236, 1973.
[26]  Jerzy A Zoladz, Bruno Grassi, Joanna Majerczak, Zbigniew Szkutnik, Michal
Korosty ski, Marcin Grandys, Wieslawa Jarmuszkiewicz, and Bernard Korzeniewski.
Mechanisms responsible for the acceleration of pulmonary vo2 on-kinetics in humans
after prolonged endurance training.   American Journal of Physiology-Regulatory,
Integrative and Comparative Physiology, 307(9):R1101--R1114, 2014.
[28]  Kenneth J Hunt, Simon E Fankhauser, and Jittima Saengsuwan.  Identification of
heart rate dynamics during moderate-to-vigorous treadmill exercise.   Biomedical
engineering online, 14(1):117, 2015.
[31]  François Peronnet, Denis Massicotte, et al.  Table of nonprotein respiratory
quotient: an update.   Can J Sport Sci, 16(1):23--29, 1991.
[32]  Yi Zhang, Azzam Haddad, Steven W Su, Branko G Celler, Aaron J Coutts, Rob
Duffield, Cheyne E Donges, and Hung T Nguyen.  An equivalent circuit model for onset
and offset exercise response.   Biomedical engineering online, 13(1):145, 2014.
[33]  William E Berg.  Individual differences in respiratory gas exchange during
recovery from moderate exercise.   American Journal of Physiology--Legacy Content,
149(3):597--610, 1947.
[34]. Nicholas M Beltz, Fabiano T Amorim, Ann L Gibson, Jeffrey M Janot, Len Kravitz,
Christine M Mermier, Nathan Cole, Terence A Moriarty, Tony P Nunez, Sam Trigg, et
al. Hemodynamic and metabolic responses to self-paced and ramp-graded exercise
testing protocols. Applied Physiology, Nutrition, and Metabolism, (999):1–8, 2018.
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Abstract This paper applies a nonparametric modelling
method with kernel-based regularization to estimate the
carbon dioxide production during jogging exercises. The
kernel selection and regularization strategies have been
discussed; several commonly used kernels are compared
regarding the goodness-of-fit, sensitivity and stability.
Based on that, the most appropriate kernel is then selected
for the construction of the regularization term. Both the
onset and offset of the jogging exercises are investigated.
We compare the identified nonparametric models, which
include both impulse response models and step response
models for the two periods, as well as the relationship
between oxygen consumption and carbon dioxide
production. The result statistically indicates that the steady
state gain of the carbon dioxide production in the onset of
exercise is bigger than that in the offset while the response
time of both onset and offset are similar. Compared with
oxygen consumption, the response speed of carbon dioxide
production is slightly slower in both onset and offset period
while its steady state gains are similar for both periods. The
effectiveness of the kernel-based method for the dynamic
modelling of cardiorespiratory response to exercise is also
well demonstrated.

Hairong Yu, Lin Ye, Hung T. Nguyen, Steven W. Su
School of Biomedical Engineering
Faculty of Engineering and Information Technology
University of Technology, Sydney, NSW 2007, Australia

Rong Song
School of Biomedical Engineering, Sun Yat-Sen University, P. R.
China

Ganesh R. Naik
University of Western Sydney, NSW 2751, Australia

Keywords Nonparametric modelling · Cardiorespiratory
response to exercise · Treadmill exercise · Carbon dioxide
production

1 Introduction

Decades ago, some sports physiology laboratories had used
the Douglas bag and the Scholander gas analyzer [1] to
measure the oxygen (O2) uptake and the amount of carbon
dioxide (CO2) produced before, during, and after exercise.
Over the last dozens of years, automated portable gas
analysis systems had been developed and applied in various
sports fields for energy consumption assessment [2]. The
study of oxygen uptake was both the traditional theme of
sports physiology study and one of the mainstreams of
current and future sports physiology research. The
characterization of gas exchanging attracted a lot of
scholars to work in the field. Hill et al. [3] studied oxygen
consumption (VO2) and investigated its recovery curve.
After moderate exercise, it is a logarithmic equation, which
is equally applicable to the recovery curves of carbon
dioxide production (VCO2). Similarly, William and Berg
illustrated the equation of carbon dioxide elimination is
equal to oxygen consumption. Researches about the VO2
and VCO2 during the exercise also had been developed.

Modelling method is widely used in the biological
signal analysis [5][6][7]. Several research studies for the
modelling of the dynamics of physiological signal in
response to treadmill exercise were also conducted
[8][9][10]. To the best of our knowledge, all the existing
studies only utilized classical system identification
approaches, e.g. the Least Square (LS), Maximum
Likelihood (ML) and Prediction Error Method (PEM).
However, the signals that exert on a human body should be
well selected to ensure the safety. Due to this reason, when
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the human being is involved in an experiment, the input
signals are often limited in both intensity and duration,
which leads to insufficient stimulation for the modelling of
the system. In this case, the LS/ML/PEM equipped with
classical model structure selection approaches often fail to
obtain an appropriate model with desired accuracy and
robustness for cardiorespiratory response estimation, which
is based on insignificantly stimulated short recording data
polluted by artifacts and noise [11][12][13].

The recently developed system identification
approaches are not only based on plenty of physical
experimental data but also emphasizing more on prior
knowledge of the system under estimation. System prior
information is often applied to model complexity selection,
which is the most critical step for system modelling. In
some papers [14][15], system dynamics is depicted by
nonparametric models rather than the most commonly used
first/second order linear time-invariant models. Often,
nonparametric methods are used when the prior
information is insufficient to determine a parametric model
structure. The new approach [13][17] which well utilizes
the prior information is based on the kernel-based
regularization approach. By using kernel technique, prior
information is adopted in the identification process by
assigning an appropriate kernel to the index function.
Specifically, papers [15] [18][19] [20] introduced the
regularization terms and the kernel designing strategies for
nonparametric system identification. Based on authors’
experiences, for the investigation of the dynamics of
cardiorespiratory response to exercise, the new
kernel-based nonparametric approach should be the best
option to greatly improve the robustness and accuracy.

The treadmill exercise is similar to human’s daily life
running or walking status so it could be applied to analyze
the mechanism of one’s exercise. It is well documented that
regular treadmill exercise can greatly improve the human
cardiovascular system, e.g., increase total oxygen demand
and consumption (the amount of increase depending on the
size of the muscles used), and VO2 Max. Besides, the
treadmill is a good choice for exercise modelling because
the model needs an accurate input to ensure a steady
workload and exclude other effect factors. Some research
[28] applied Heart Rate (HR) to make the analysis, but it
can easily be affected by human’s motion or other aspects.
In this way, other researchers choose how the gas changes
during the exercise as an index. Among the studies of
cardiorespiratory response to exercise, researchers
preferred to choose oxygen consumption as the index. Both
linear and nonlinear static models [22][23][24] had been
proposed based on the walking speed. Furthermore, some
researchers modelled the VO2 response with a
monoexponential curve [25][26][27]. In these studies, the
oxygen production could indicate the respiratory gas

exchange, energy providing situation, the energy saving
phenomenon, the differential effect of training tense and
other biological phenomenon. Some of the researchers had
also recorded the VCO2 as an auxiliary data for analysis.

The above studies present different aspects of
Kinematics and the pattern of gas exchange. However,
VCO2 is uncommonly applied. What’s more, the dynamic
changing of the VCO2 and VO2 during the different periods
of exercise and their relationship need a deeper
investigation to get a comprehensive understand for
human’s exercise mechanism. In this paper, we apply the
nonparametric modelling method [13][17] to identify the
relationship between VCO2 and the speed of the treadmill.
The inputs of the Speed− to− the−VCO2 system are step
functions (i.e., the onset period is from 3km/h to 8km/h,
and the offset is from 8km/h to 3km/h). The exercise
protocol of the treadmill speed is illustrated as in Fig. 1. We
adopted the kernel-based estimation method for this
modelling. The data were collected from 20 untrained
participants in the treadmill exercise. After the
identification, we make a statistical comparison between
the onset period (from walking to running) of the speed and
the offset period (from running to walking). Besides, we
analysed the relationship between the VO2 and the VCO2.
The contributions of the paper are listed as follows:

– The kernel-based nonparametric modelling approach
has been applied to describe the dynamics of both VO2
and VCO2 responses to exercise.

– Based on comprehensively comparative numerical
analyses, the SS kernel has been selected as the best
kernel for the identification of dynamic response to
exercise regarding the goodness-of-fit and parameter
insensitivity.

– Based on the reliable experimental data acquired from
twenty subjects, the dynamic models of the VO2 and
VCO2 for exercise responses for both onset and offset
of exercise have been identified.

– Comprehensively statistical analyses are performed to
compare the dynamic characteristics of the onset and
offset exercise responses for VO2 and VCO2, and
several useful conclusions have been made to provide
instructive guidance for the regulation of exercise
intensity.

The remainder of this paper is organized as follow. The
methods including regularization, kernel selection,
experiment and analysis are presented in Section 2. The
simulation, kernel selection, identification results and
comparisons are shown in Section 3. The analysis of the
results and physiological explanation are discussed in
Section 4. Finally, conclusions are drawn in Section 5.
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Fig. 1 Raw VCO2 and treadmill speed during the exercise.

2 Methods

According to previous studies, for the VO2 during exercise,
the exponential function was applied to describe the
dynamic performance [25][26][27]. Puente [25]
demonstrated that the VCO2 could also be described by the
same as:

VCO2(t) =VCO0
2 +RA[1− e−(t−TD)/τ ]. (1)

where VCO2(t) is the CO2 production at time t, VCO0
2 is

the initial value of CO2 production, RA is the response
amplitude, TD is the time delay, and τ is the time constant.

This function implies that Puente treated the model of
VO2 response as a first-order dynamic system with constant
time delay. However, for different individuals, the patterns
of VCO2 responses to exercise are quite different based on
our observations. Hence, the first order model would not be
a good choice to use. In this study, as discussed in the
introduction section, we will adopt the nonparametric
kernel-based modelling method to obtain a better result.
Specifically, as one of the most commonly used
nonparametric model, the finite impulse response (FIR),
will be used to describe the characteristics of the system.

We first introduce the kernel-based estimation method in
section 2.1 and then present the kernels we intend to select
in section 2.2. The details of the experiment are presented in
section 2.3 and the statistical methods are shown in section
2.4.

2.1 Kernel Based Estimation Method for the Modelling of
Finite Impulse Response

The data of carbon dioxide production and the speed of the
treadmill are shown in Fig. 1, which indicates the step
response of VCO2 regarding treadmill speed.

As previously mentioned, we will use nonparametric
estimation based on kernel technique to build the VCO2
model for treadmill exercise. The relationship between the
speed of the treadmill and the VCO2 can be considered as a
single input single output (SISO) system. We consider the
discrete case and assume the sampling time is t. Thus, the
discrete time output calculated by impulse response can be
expressed as (2):

y(t) =
∞

∑
τ=0

u(t− τ)g[τ]+ ε(t), t = 1,2, . . . ,N, (2)

where u(t) is the input, y(t) is the output, g(τ) is the
impulse response, ε(t) is Gaussian white noise, and N is the
total number of sampling.

The model output (predictor) is defined as:

Pt [g] =
∞

∑
τ=0

u(t− τ)g[τ]. (3)

Then the cost function regarding estimation error can be
written as:

ŷ(t) =
N

∑
t=1

(y(t)−Pt [g])2. (4)

In order to rewrite (2) in a vector form, we stack all the
elements (row) in y(t) and u(t− τ) to form the matrices YYY
and φφφ . Then the minimum value of the cost function can
be solved by LS estimation or ML estimation. We define
g(τ) = θθθ ∈ Rm, where the vector θθθ ∈ Rm contains the FIR
coefficients. Then the LS estimation of the parameters g(τ)
is:

θ̂θθ = arg min
θθθ∈Rm

‖YYY −φφφθθθ‖2. (5)
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However, the measurements of VCO2 from gas analyzer
contain various artifacts and are polluted by various noises.
To regularize the estimation, a regularization term can be
added to (5). Regularization approaches aim to put “soft”
constraints on the structure θθθ [18][19]. We define JR(θθθ) as
the regularization term, and it belongs to a Reproducing
Kernel Hilbert Space (RKHS) H . If we only consider FIR,
the norm ‖gθθθ‖H in the space H can be expressed via a
quadratic form in (6), where PPP is a suitable kernel matrix:

JR(θθθ) = θθθ
TPPP−1

θθθ . (6)

The structure of PPP can account for different properties
associated with prior information, which will be discussed in
next subsection. The estimation of θθθ can then be expressed
as follow:

θ̂θθ=arg min
θθθ∈Rm

(
‖YYY −φφφθθθ‖2 + γθθθ

TPPP−1
θθθ

)
=
(
PPPφφφ

T
φφφ + γIm

)−1
PPPφφφ

TYYY ,
(7)

where γ is a positive scalar, and Im ∈ Rm×m is an identity
matrix with the dimension of m×m.

2.2 Kernel Selection

The construction of kernel PPP is made up of two parts: the
kernel structure design and hyper-parameter estimation.
Many researchers have strived for kernel design
[11][12][13][17][21]. Among them, the Stable Spline (SS)
kernel, the Diagonal/ Correlated (DC) kernel, and the
Diagonal (DI) kernel have been well developed. Therefore,
we select the following kernels for simulation study to
achieve a better estimation of the impulse response of
VCO2.

– SS kernel:

P(i, j) =
c
2

e−βmin(i, j)− c
6

e−3βmax(i, j), (8)

where c≥ 0, 0≤ β < 1.
– DC kernel:

P(i, j) = cλ
i+ j

2 ρ
|i− j|, (9)

where c≥ 0, 0≤ λ < 1, ρ ≤ 1.
– DI kernel:

P(i, j) =
{

cλ i, if i = j
0, else

(10)

where c≥ 0, 0≤ λ < 1.

According to (1), the relationship between the CO2
production and the treadmill speed can be approximately
considered as a first order system. For this reason, we start
the simulation study by using a first order system with
different parameter settings. The detailed settings of the
system are as follows:

Y (s) =
K

T s+1
U(s), (11)

where K is the steady state gain and follows the uniform
distribution U(5, 15). T is the time constant and follows
U(15, 25).
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Fig. 2 An input and output pair of the simulated system.

A step function is selected as the input u(t), and the
simulated output y(t) is polluted by a Gaussian white noise
with 1 dB Signal-Noise Ratio (SNR). The sampling time is
selected as 1 second. The input u(t) and output y(t) of the
simulated system are shown in Fig. 2.

2.3 Experiment

20 untrained healthy male subjects were asked to run on the
treadmill. During the exercise, all data including VCO2 and
VO2 are collected by a portable gas analyser-K4B2. The
UTS Human Research Ethics Committee (UTS HREC
2009000227) had approved this experiment and the
informed consent from all participants before the
commencement of data collection was obtained. The
statistical physical information of the participants is shown
in Table 1.

Table 1 Information about the subjects

Information Age(year) Height(cm) Weight(kg)
Mean 46.4 176.6 91.2

Standard Deviation 5.68 4.40 11.37

Before the experiment, the subjects were asked to sit for
five minutes and then stand for two minutes. The physical
conditions and the environment settings were standardised
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for all participants. During the exercise, the participants
first were walking at 3 km/h for four minutes and then
running at 8 km/h for eight minutes followed by walking at
3 km/h for eight minutes before stopping. To exclude the
impact of the subjects’ weight on VCO2 and VO2, the
VCO2 and VO2 were both divided by the weight (Kg) of
each subject. The normalized VCO2 and VO2 are recorded
as VdCO2 and VdO2.

2.4 Statistic

– The term “Time Index” as a reflection of response speed
is introduced, which indicates the time when the output
reaches the 75% of maximum.

– The histogram and normal probability are plotted in
Matlab to present whether the gain and Time Index
follow a normal distribution or not. Paired T -test is
used for the one which follows and Rank Sum test is
used for the one which does not follow. Generally,
P < 0.05 was considered as statistically significant.
Where h = 0 means we cannot determine the size of the
two sets of data by mean value because the distinction
is small. Meanwhile, the mean value can be used to
make the comparison when h = 1 because the
distinction is significant.

– The correlation coe f f icient between the estimated
VdCO2 and VdO2 is calculated in order to know about
the correlation between them. Normally, if the
correlation coefficient is between ±0.80 to ±1.00, the
two variables are highly correlated.

– We calculated the difference of Time Index (VdCO2
minus VdO2) in two periods to show whether it is all
positive or not.

3 Results

In this section, we first present the simulation and kernel
selection result in section 3.1. Then the modelling result for
the onset and offset period is represented respectively in
section 3.2 and 3.3. The IR and estimated VdCO2 of both
periods are also shown. Furthermore, we develop the
comparison of onset vs offset and VdCO2 vs VdO2 from the
aspect of the impulse response, step response and estimated
output in section 3.4 and 3.5. Different statistic methods are
employed for the analysis.

3.1 Simulation and kernel selection

At first, we use the LS method without kernel technique to
perform the identification. The identified impulse response
(IR) of the system is shown in Fig. 3. We can observe that
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Fig. 3 The estimated IR by using the classical LS estimation.

the estimation error is big in the sense that the noise is
amplified. Next, we will show the effectiveness of the
kernel-based regularization method. Then, we try to select
the best parameters for each kernel and compare the
sensitivity to parameters of the three kernels. The results
are shown in Fig. 4.

After that, we tune the parameters partially according to
the constraints introduced in [16] and make the final choice
by the best results in our simulation. The selected optimal
parameters of the kernels and the regularizer are listed below
[11][12][13][17][21].

– SS kernel: c = 1,β = 0.987.
– DC kernel: c = 0.3,λ = 0.999,ρ = 0.999.
– DI kernel: c = 0.3,λ = 0.95.
– Regularizer: γ = 4.

We make a comparison between the true IR and the
estimated IR based on the above-listed kernels. As we can
see, the IR from SS kernel is closer to the true value
compared to the others. At the same time, we compare the
estimated output and the true output. We carry out the
simulation for 20 times. One of the simulation results about
IR and estimation is shown in Fig. 5.

The goodness-of-fit of the estimated output is calculated
by the fit ratio NRMSE (normalised root mean square error)
which is defined as:

Fit Ratio =

(
1− ||ŶN−YN ||
||YN−mean(YN)||

)
. (12)

The averaged results are shown as follows and the
simulation result is shown in Fig. 6.

– SS kernel: Average fit=0.9395.
– DC kernel: Average fit=0.9439.
– DI kernel: Average fit=0.9547.

Regarding the goodness-of-fit, the kernel-based methods
outperformed the classical LS estimation. The three kernels
have a similar fitness because the mean value of their fitness
are between 0.93-0.96. Thus, we applied T -test to verify the
significant difference of the goodness-of-fit. All the results
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Fig. 4 Comparison results of the kernel with different parameters: (A) SS kernel with different parameters. (B) DC kernel with different parameters.
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show that p < 0.0001 which indicate they are of significant
difference. That means the influence of different kernels on
the results is significant. We could observe from the IR in
Fig. 4 that the DI and DC kernel is over-fitted although they
have a higher fitness. Moreover, the SS kernel has a more
smooth IR and less sensitivity to the parameter. Thus, we
choose the SS kernel to get a better IR estimation.

3.2 Modelling of Onset Period

In this part, we selected the data from t1 = 501s to t2 = 900s
(see Fig. 1) for the modelling of onset impulse response.
The sampling rate of the VdCO2 is irregular since the gas
response recorded by K4B2 is breath by breath based. Thus,
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Fig. 6 Box plots of the estimations by using the SS, DC, DI kernels
[from left to right].

the raw data of VdCO2 and VdO2 have been interpolated and
filtered by a median filter. For the recorded 400 observations,
to remove the offset, the average value of the onset period
for the initial 150 data is deducted. The order of the impulse
response model is selected as 400.

The IR model can be expressed as:

y[n] = g[1]u[n−1]+g[2]u[n−2]+ . . .+g[400]u[n−400]

=
400

∑
i=1

g[i]u[n− i].

(13)
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Fig. 7 Average IR and individual IR from 20 participants during the
onset period of treadmill.
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Fig. 8 Comparison between estimated VdCO2 and measurements from
20 participants during the onset period.

After the pre-processing, we apply the kernel based
estimation method to estimate the IR model by using the
SS kernel (c = 1,β = 0.987,γ = 200) as introduced in
Section 2.

For the onset period of the treadmill exercise, the
estimated impulse response of all participants (dotted line)
and the average IR (bold line) are shown in Fig. 7.

The response patterns are similar for most participants,
but the individual differences do exist, which indicate that
simply use of a first order model is not sufficient to describe
the dynamic response of VdCO2. This is actually an
advantage of adopting nonparametric modelling approach.
The predicted VdCO2 output marked (bold line) are
compared with the measured VdCO2 of each participant
(dotted line) as shown in Fig. 8. It can be seen that the
estimation fits well with the actual measurements regarding
high goodness-of-fit.

3.3 Modelling of Offset Period

We select the data from t1=901s to t2=1300s for the
modelling of offset period. Similar to the onset period, the
original data are interpolated and filtered. The average
value of the offset period for the initial 150 data is
removed. The sampling time and the order of the impulse
response model are selected as those of onset. The
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Fig. 9 Average IR and individual IR from 20 participants during the
offset period of treadmill.
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from 20 participants during the offset period of the treadmill.
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parameters of the kernel are also the same. The estimated
impulse response of all participants (dotted line), as well as
the, averaged IR (bold line) is shown in Fig. 9.

Again, most participants have a similar IR pattern, but
some of them have a pattern which is quite different with
the response of a first order system. The predicted VdCO2
output (bold line) and the actual VdCO2 of each participant
(dotted line) are shown in Fig.10.

3.4 Comparison between Onset and Offset Period

To see this difference in the response speed, we normalized
the averaged estimation of VdCO2 in onset and offset period,
which is shown in Fig. 11.
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Fig. 13 The comparison of individual gain(A) and Time Index(B) of VdCO2 in onset and offset.

To show the transient behaviors, e.g., the response time,
the Step Response (SR) of each participant and the
averaged SR are plotted both in onset and offset period.
From the comparison of the average IR and SR between
onset and offset period in Fig. 12, we find that the gain of
the onset period is bigger than that of the offset.
Meanwhile, the response speed for the IR and SR of the
two periods are slightly different.

For a thorough individual analysis, we plot the gain and
“Time Index” of each participant which is shown in Fig. 13.
The histogram and normal probability plotted in Matlab
indicate that the individual Time Index follows the normal
distribution while the individual gain does not strictly
follow. Thus we applied Paired T -test for individual Time
Index and test for individual gain using Matlab. The
outcomes of the paired T -test and Ranks Sum test for Time
index and Gain about VdCO2 in onset and offset are shown
in Table 2.

According to the outcomes (i.e. Table 2), the Time
Index of onset and offset shows no significant difference.
Jerzy’s research [26] reported a similar result about VO2.
For the steady-state gain, we can compare the mean value

Table 2 The statistic test outcome of VdCO2 in onset and offset

Item Paired T -test Rank sum test
Time Index h=0, p=0.2539 –

Gain – h=1, p=0.0411

of 20 participants, 20.50 for onset and 18.35 for offset.
Compared to the offset period, the higher gain in the onset
period indicates a higher ratio between output and input. In
other words, the results of our study show that for the same
speed change, human body exhales out more CO2 in the
onset than offset. We will give a detail explanation in the
next section. Hunt’s research in Heart Rate (HR) modelling
and control [28] also drew a similar conclusion for HR
response.

3.5 Comparison of VdCO2 and VdO2

Various comparisons, including IR, SR, and estimated
output for VdCO2 and VdO2, for both onset period and
offset period, are shown in Fig. 14 and Fig. 15, where
clearly show that the changing of carbon dioxide is
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dynamically correlated to the changing of oxygen, during
onset and offset exercise.

As the calculated correlation coefficient is 0.9991 in
onset period and 0.9990 in offset period respectively, the
high correlation between these two variables can be
confirmed.

That means in some cases, the VdO2 can be
approximately estimated by VdCO2, even in the transient
period, or vice versa. This may be helpful to simplify the
experimental procedure, as well as to reduce the cost of
equipment maintenance. For example, for the gas collection
during the experiment, it is often the case that the
assessment of the exhaled gas components (with more
carbon dioxide) is simpler than that of the inhaled gas (with
more oxygen), i.e., the measurement of carbon dioxide
production is more convenient than that of oxygen
consumption. Then, if it is necessary, the measurement of
VdO2 can be bypassed, but estimated by using VdCO2
instead to reduce the cost.

To show interpersonal differences, the gain and Time
Index of each participant in onset and offset period are
shown in Fig. 16 and Fig. 17. The histogram and normal
probability of them are plotted in Matlab to decide which
test methods will be applied.

Similar to the last subsection, we applied Paired T -test
for individual Time Index and Rank Sum test for individual
gain (using Matlab) according to whether they follow the
normal distribution or not. The outcomes are shown in Table
3 and Table 4.

According to the above outcomes, the gain of VdCO2 and
VdO2 in both periods shows no significant difference. Then
for the Time Index of the two periods, we can compare the
mean value of 20 participants, 228.15 for VdCO2 and 219.80
for VdO2 in onset; 229.75 for VdCO2 and 220.05 for VdO2 in
offset. It indicates that the VdO2 shows a quicker response
speed in both periods.

To further verify the conclusion, the difference of Time
Index (VdCO2 minus VdO2) in two periods are calculated.
As the differences are all positive, it further validated the
conclusion.

Table 3 The statistic test outcome of VdCO2 and VdO2 in the onset

Item Paired T -test Rank Sum test
Time Index h=1, p=6.96×10−6 –

Gain – h=0, p=0.0720

Table 4 The statistic test outcome of VdCO2 and VdO2 in the offset

Item Paired T -test Rank Sum test
Time Index h=1, p=6.54×10−6 –

Gain – h=1, p=0.3942

4 Discussion

In this section, we attempt to explain the results from a
physiological point of view. The explanation about the
similarity and difference between onset vs. offset and
VdCO2 vs. VdO2 are illustrated respectively in Subsection
4.1 and 4.2.

Aerobic respiration produces carbon dioxide and water,
resulting in the releasing of energy and generating large
amounts of Adenosine Triphosphate (ATP, also known as
adenine nucleoside triphosphate). ATP transports chemical
energy within cells for metabolism. Under normal
circumstances, only considering the case of glucose for
energy, in aerobic breathing, the product is carbon dioxide
and water. The total reaction of aerobic respiration is shown
in Eq. (14). The concept of Respiratory Quotient [31]
(referred as RQ or R, the VCO2 divided by VO2 in local
tissue) was presented, which is equal to 1 when glucose is
the only available source for energy according to Eq. (14).
Every one litre of oxygen will produce one litre of carbon
dioxide and the volume ratio of carbon dioxide and oxygen
is 1 [29][30]:

C6H12O6 +6O2 +6H2O
enzyme−→

6CO2 +12H2O+ large amount o f energy.
(14)

Based on the above background about aerobic
respiration, the results and their physiological explanations
are summarized as follows.

4.1 Comparison between Onset and Offset Period of VdCO2

– The Time Index of VdCO2 in onset is similar to offset
and the gain of VdCO2 in onset is bigger than offset.

As we observed, for the same speed change, the carbon
dioxide consumption in onset is more than offset. The
reason behind this observation is the fact that ATP is the
“molecular currency” for intracellular energy transfer,
storage as well as transfer chemistry energy. With the
increasing of the exercise intensity, the human body has to
consume more ATP in onset period than that of in offset
period. Human body provides ATP and produces carbon
dioxide by respiration. Thus, the participants produce more
carbon dioxide in onset period than offset for the same
speed changing rate. This observation is also related to the
“oxygen debt” [4][32][34], which is first proposed by Hill
[3]. The “debt” occurs during the onset period because the
stored credits are expended.
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Fig. 14 (A)Comparison between average IR of VdCO2 and VdO2 during onset period. (B)Comparison between average estimation output of
VdCO2 and VdO2 during onset period. (C)Comparison between average SR of VdCO2 and VdO2 during onset period. (D)The normalization of
estimated VdCO2 and VdO2 in onset period (Partial magnification).
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Fig. 16 The comparison of individual gain (A) and Time Index (B) between VdCO2 and VdO2 in onset.
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Fig. 17 The comparison of individual gain (A) and Time Index (B) between VdCO2 and VdO2 in offset .

4.2 Comparison of VdCO2 and VdO2

– Similarity: The VdCO2 and VdO2 are significantly
related, and the gains of VdCO2 and VdO2 are similar in
both periods.

The similar gain and correlation coefficient of VdCO2
and VdO2 also work in concert with the respiration formula
as Eq. (14).

– Difference: The Time Index of VdCO2 is bigger than that
of VdO2 in both periods, so the VdO2 shows a quicker
response speed.

The different Time Index means a different gas delivery
rate. The Fig. 3 in Williams’s research [33] shows the same
result. For their half-time constant, oxygen consumption is
smaller than carbon dioxide elimination. This is also related
to the O2 debt and excess CO2 and respond to the Subsection
4.1. The Fig. 2 of Karlman’s research [4] also shows that the
R is over 1 which is same to our results and explain it by a
buffer system.

5 Conclusion

This study investigates the onset and offset dynamics of
cardiorespiratory response to treadmill exercise. In order to
detect the characteristic differences during onset and offset
exercise, a recently developed nonparametric modelling
method based on l2-norm kernel regularization has been
applied to identify the impulse responses of the carbon
dioxide production (VdCO2) and oxygen consumption
(VdO2) responses. By well-designed kernel based
regularization term, this approach can handle the data with
short records and low SNR (Signal-to-Noise-Ratio), and
orderly fit the experimental data. In terms of the fitness for
the experimental data from twenty healthy subjects, the
stable spline (SS) kernel achieves a reliable estimation of
the impulse response for both VdCO2 and VdO2. Based on
the identified impulse response model, various statistical
comparisons are developed and the comparison results are
explained from physiological perspective. The bigger gain
of VdCO2 in onset demonstrates the human’s ATP storage
during the relaxing status. Meanwhile, the quicker response
speed of VdCO2 in both periods explains why there is a
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delay due to the conversion from O2 to CO2. We believe the
kernel based nonparametric modelling approach together
with the developed impulse response models will
significantly improve our understanding of human
cardiorespiratory response to exercise, and provide
instructive guidance for the regulation of exercise intensity
to ensure the efficiency and safety during training and
rehabilitation exercises.
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Szkutnik, Michal Korostyński, Marcin Grandys, Wieslawa
Jarmuszkiewicz, and Bernard Korzeniewski. Mechanisms
responsible for the acceleration of pulmonary VO2 on-kinetics in
humans after prolonged endurance training. American Journal of
Physiology-Regulatory, Integrative and Comparative Physiology,
307(9):R1101–R1114, 2014.

27. Polle DC, Jones AM. Towards an understanding of the
mechanistic bases of VO2 kinetics: summary of key points raised
in chapters 211. Oxygen Uptake Kinetics in Sport, Exercise and
Medicine, pages 294–328, 2007.

28. Kenneth J Hunt, Simon E Fankhauser, and Jittima Saengsuwan.
Identification of heart rate dynamics during moderate-to-vigorous
treadmill exercise. Biomedical engineering online, 14(1):117,
2015.

29. PR Rich. The molecular machinery of Keilin’s respiratory chain,
2003.

30. Lubert Stryer. Biochemistry, 1995. Newyork, NY: WH Freeman
and Co, Fourth Google Scholar, 1995.

31. François Peronnet, Denis Massicotte, et al. Table of nonprotein
respiratory quotient: an update. Can J Sport Sci, 16(1):23–29,
1991.

32. Yi Zhang, Azzam Haddad, Steven W Su, Branko G Celler, Aaron J
Coutts, Rob Duffield, Cheyne E Donges, and Hung T Nguyen. An



14 Hairong Yu et al.

equivalent circuit model for onset and offset exercise response.
Biomedical engineering online, 13(1):145, 2014.

33. William E Berg. Individual differences in respiratory gas
exchange during recovery from moderate exercise. American
Journal of Physiology–Legacy Content, 149(3):597–610, 1947.

34. Nicholas M Beltz, Fabiano T Amorim, Ann L Gibson, Jeffrey M
Janot, Len Kravitz, Christine M Mermier, Nathan Cole, Terence A
Moriarty, Tony P Nunez, Sam Trigg, et al. Hemodynamic
and metabolic responses to self-paced and ramp-graded exercise
testing protocols. Applied Physiology, Nutrition, and Metabolism,
(999):1–8, 2018.



author

Click here to access/download
attachment to manuscript
authors biography.docx

Click here to view linked References

http://www.editorialmanager.com/mbec/download.aspx?id=232297&guid=27a965b7-a9c5-4b22-95d0-c5301b6b69cf&scheme=1
http://www.editorialmanager.com/mbec/viewRCResults.aspx?pdf=1&docID=11649&rev=3&fileID=232297&msid={B535F03D-FE33-4EF5-982B-777E7F8D0AB5}


Response letter

Click here to access/download
attachment to manuscript

response letter.docx

Click here to view linked References

http://www.editorialmanager.com/mbec/download.aspx?id=232327&guid=413cb396-283d-4e8b-885d-b7b4c5b6324f&scheme=1
http://www.editorialmanager.com/mbec/viewRCResults.aspx?pdf=1&docID=11649&rev=3&fileID=232327&msid={B535F03D-FE33-4EF5-982B-777E7F8D0AB5}


Graphical Abstract (GA) Click here to download Graphical Abstract (GA) Graphical_Abstract_Yu.jpg 

http://www.editorialmanager.com/mbec/download.aspx?id=232298&guid=97124c97-f302-4408-b700-192af677c095&scheme=1
http://www.editorialmanager.com/mbec/download.aspx?id=232298&guid=97124c97-f302-4408-b700-192af677c095&scheme=1

