Skip to main content

Advertisement

Log in

A Random Forest classifier-based approach in the detection of abnormalities in the retina

  • Original Article
  • Published:
Medical & Biological Engineering & Computing Aims and scope Submit manuscript

Abstract

Classification of abnormalities from medical images using computer-based approaches is of growing interest in medical imaging. Timely detection of abnormalities due to diabetic retinopathy and age-related macular degeneration is required in order to prevent the prognosis of the disease. Computer-aided systems using machine learning are becoming interesting to ophthalmologists and researchers. We present here one such technique, the Random Forest classifier, to aid medical practitioners in accurate diagnosis of the diseases. A computer-aided diagnosis system is proposed for detecting retina abnormalities, which combines K means-based segmentation of the retina image, after due preprocessing, followed by machine learning techniques, using several low level and statistical features. Abnormalities in the retina that are classified are caused by age-related macular degeneration and diabetic retinopathy. Performance measures used in the analysis are accuracy, sensitivity, specificity, F-measure, and Mathew correlation coefficient. A comparison with another machine learning technique, the Naïve Bayes classifier shows that the classification achieved by Random Forest classifier is 93.58% and it outperforms Naïve Bayes classifier which yields an accuracy of 83.63%.

Random Forest classifier for abnormality detection in retina images.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. American Academy of Ophthalmology. Diabetic Retinopathy, Preferred Practice Pattern. San Francisco: American Academy of Ophthalmology, 2008. Available at: http://www.aao.org/ppp

  2. Early Treatment Diabetic Retinopathy Study Research Group (1991) Grading diabetic retinopathy from stereoscopic color fundus photographs—an extension of the modified Airlie House classification: ETDRS report number 10. Ophthalmology 98(5):786–806

    Article  Google Scholar 

  3. Crabb JW, Miyagi M, Gu X, Shadrach K, West KA, Sakaguchi H, Kamei M, Hasan A, Yan L, Rayborn ME, Salomon RG, Hollyfield JG (2002) Drusen proteome analysis: an approach to the etiology of age-related macular degeneration. Proc Natl Acad Sci U S A 99(23):14682–14687

    Article  CAS  Google Scholar 

  4. Zhang Z, Srivastava R, Liu H, Chen X, Duan L, Kee Wong DW, Kwoh CK, Wong TY, Liu J (2014) A survey on computer aided diagnosis for ocular diseases. BMC Medical Informatics Decision Making 14(1):80. https://doi.org/10.1186/1472-6947-14-80

    Article  PubMed  Google Scholar 

  5. Anitha J, Hemanth DJ (2013) An efficient Kohonen-Fuzzy neural network based abnormal retinal image classification system. Neural Network World 2:149–167

    Article  Google Scholar 

  6. Abbadi NKE, Saadi EHA, Automatic detection of exudates in retinal images, IJCSI International Journal of Computer Science Issues 2013, Vol. 10, Issue 2, No 1, pp: 237–242

  7. Akila T, Kavitha G, Detection and classification of hard exudates in human retinal fundus images using Clustering and Random Forest methods, International Journal of Emerging Technology and Advanced Engineering 2014, Vol. 4, Special Issue 2, pp. 24–29

  8. Jayakumari C, Santhanam T (2007) Detection of hard exudates for diabetic retinopathy using contextual clustering and fuzzy ART neural network. Asian J Information Technol 6(8):842–846

    Google Scholar 

  9. Osareh A, Mirmehdi M, Thomas B, Markham R (2003) Automated identification of diabetic retinal exudates in digital colour images. Br J Ophthalmol 87(10):1220–1223

    Article  CAS  Google Scholar 

  10. Sopharak A, Uyyanonvara B, Barman S, Williamson TH (2008) Automatic detection of diabetic retinopathy exudates from non-dilated retinal images using mathematical morphology methods. Comput Med Imaging Graph 32(8):720–727

    Article  Google Scholar 

  11. R. Scherer, Multiple fuzzy classification schemes studies in fuzziness and soft computing (springer), 228 (2012)

  12. Jayanthi D, Devi N, SwarnaParvathi S (2010) Automatic diagnosis of retinal diseases from color retinal images. Int J Computer Sci Information Security 7(1):234–238

    Google Scholar 

  13. Akram MU, Khalid S, Tariq A, Khan SA, Azam F (2014) Detection and classification of retinal lesions for grading of diabetic retinopathy. Comput Biol Med 45:161–171

    Article  Google Scholar 

  14. Niemeijer M, Ginneken BV, Russell SR, Suttorp-Schulten MS, Abramoff MD (2007) Automated detection and differentiation of drusen, exudates, and cotton-wool spots in digital color fundus photographs for diabetic retinopathy diagnosis. Investig Ophthalmol Vis Sci 48(5):2260–2267

    Article  Google Scholar 

  15. Niemeijer M, Ginneken BV, Staal J, Suttorp-Schulten MS, Abramoff MD (2005) Automatic detection of red lesions in digital color fundus photographs. IEEE Trans Medical Imaging 24(5):584–592

    Article  Google Scholar 

  16. Spencer T, Olson JA, McHardy KC, Sharp PF, Forrester JV (1996) An image-processing strategy for the segmentation and quantification of microaneurysms in fluorescein angiograms of the ocular fundus. Comput Biomed Res 29(4):284–302

    Article  CAS  Google Scholar 

  17. Frame AJ, Undrill PE, Cree MJ, Olson JA, McHardy KC, Sharp PF, Forrester JV (1998) A comparison of computer based classification methods applied to the detection of microaneurysms in ophthalmic fluorescein angiograms. Comput Biol Med 28(3):225–238

    Article  CAS  Google Scholar 

  18. Staal J, Abramoff MD, Niemeijer M, Viergever MA, Ginneken BV (2004) Ridge- based vessel segmentation in color images of the retina. IEEE Transaction Medical Imaging 23(4):501–509

    Article  Google Scholar 

  19. Niemeijer M, Abramoff MD, Ginneken BV (2009) Information fusion for diabetic retinopathy CAD in digital color fundus photographs. IEEE Transaction Medical Imaging 28(5):775–785

    Article  Google Scholar 

  20. Rocha A, Carvalho T, Jelinek HF, Goldenstein S, Wainer J (2012) Points of interest and visual dictionaries for automatic retinal lesion detection. IEEE Trans Biomed Eng 59(8):2244–2253

    Article  CAS  Google Scholar 

  21. Roychowdhury S, Dara DK, Parhi KK (2014) DREAM: diabetic retinopathy analysis using machine learning. IEEE J Biomedical Health Informatics 18(5):1717–1728

    Article  Google Scholar 

  22. Agurto C, Barriga ES, Murray V, Nemeth S, Crammer R, Bauman W, Zamora G, Pattichis MS, Soliz P (2011) Automatic detection of diabetic retinopathy and age-related macular degeneration in digital fundus images. Invest Ophthalmol Vis Sci 52(8):5862–5871

    Article  Google Scholar 

  23. Kavakiotis I, Tsave O, Salifoglou A, Maglaveras N, Vlahavas I, Chouvarda I, Machine learning and data mining methods in Diabetes Research, Computational and Structural Biotechnology Journal 2017, Elsevier, Vol 15, pp. 104–116

  24. Saiprasad G, Chang C, Safdar N, Saenz N, Seigel E (2013) Adrenal gland abnormality detection using Random Forest classification. J Digit Imaging 26(5):891–897

    Article  Google Scholar 

  25. A. Lang, A. Carass, E. Sotirchos, P. Calabresi, J.L. Prince, Segmentation of retinal OCT images using a random forest classifier, Proceedings of SPIE-the International Society for Optical Engineering 2013, 8869: 1667494, available on: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3660978/

  26. Welfer D, Scharcanski J, Kitamura CM, Dal Pizzol MM, Ludwig LWB, Marinho DR (2010) Segmentation of the optic disk in color eye fundus images using an adaptive morphological approach. Comput Biol Med 40(2):124–137

    Article  Google Scholar 

  27. Saha R, RoyChowdhury A, Banerjee S. Diabetic retinopathy related lesions detection and classification using machine learning technology. Springer International Publishing Switzerland, Artificial Intelligence and Soft Computing (ICAISC), 2016, Vol. 9693, pp. 734–745

  28. Decencière et al.,Feedback on a publicly distributed database: the Messidor database. Image Analysis & Stereology, vol. 33, no. 3, p. 231–234, aug. 2014, ISSN 1854–5165, Available at: http://www.ias-iss.org/ojs/IAS/article/view/1155 or https://doi.org/10.5566/ias.1155

  29. Decencière E, et al. TeleOphta: Machine learning and image processing methods for teleophthalmology. IRBM (2013), https://doi.org/10.1016/j.irbm.2013.01.010, TeleOphta: Machine learning and image processing methods for teleophthalmology

  30. Kauppi T, Kalesnykiene V, et al. DIARETDB0-standard diabetic retinopathy database, calibration level 0. IMAGERET project 2007,http://www.it.lut.fi/project/imageret/diaretdb0

  31. Kauppi T, Kalesnykiene V, et al. DIARETDB1-standard diabetic retinopathy database, calibration level 1. IMAGERET projects 2007, http://www.it.lut.fi/project/imageret/diaretdb1

  32. http://www.medicinenet.com/image-collection/age-related_macular_degeneration_picture/picture.htm

  33. RoyChowdhury A, Banerjee S, Segmentation of retina images to detect abnormalities arising from diabetic retinopathy. [preprint]

  34. Liu D, Yu J, Otsu method and K-means, Ninth International Conference on Hybrid Intelligent Systems 2009, IEEE Computer Society, Vol. 1, pp. 344–349

  35. Roychowdhury A, Banerjee S, Random Forests in the classification of diabetic retinopathy retinal images, Advanced Computational and Communication Paradigms, Proceedings of International Conference on Advanced Computational and Communication Paradigms (ICACCP-2017), Vol. 1, pp. 168–176

  36. Breiman L (2001) Random Forests, machine learning. Springer 45(1):5–32

    Google Scholar 

  37. Witten I, Frank E, Hall M. Data mining: practical machine learning tools and techniques.3rd Edition, Morgan Kaufmann, 2011

Download references

Acknowledgements

The authors wish to acknowledge medical experts for fruitful consultations during the course of this work.

Funding

The authors received support for this research from a grant from Department of Biotechnology, Government of India (No.BT/PR4256/BID/7/393/2012 dated 02.08.2012).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sreeparna Banerjee.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chowdhury, A.R., Chatterjee, T. & Banerjee, S. A Random Forest classifier-based approach in the detection of abnormalities in the retina. Med Biol Eng Comput 57, 193–203 (2019). https://doi.org/10.1007/s11517-018-1878-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11517-018-1878-0

Keywords

Navigation