Skip to main content
Log in

Computational wrist analysis of functional restoration after scapholunate dissociation repair

  • Original Article
  • Published:
Medical & Biological Engineering & Computing Aims and scope Submit manuscript

Abstract

The scapholunate ligament stabilizes the scaphoid and lunate of the proximal row in the wrist which allows for proper force transmission with the radius and ulna. Damage to this structure degenerates into arthritis and disability. Controversy exists over the best technique to restore function and reduce pain. A three-dimensional computational model of the wrist and hand was used to investigate the biomechanical effects of scapholunate ligament dissociation and its repair. The model replicated 3D bony anatomy, soft tissue structures, and muscle loading. The model predicted the increased instability caused by the injury, consistent with experimental and clinical evidence, and a return of more healthy kinematics with the repair. Changes to load transmission across the radiocarpal joints were noted with the injury, only some of which were mitigated by the repair. As better understanding of the biomechanics of the wrist joint is achieved, this model could prove to be an important tool to further investigate wrist mechanics and inform the effects of treatment options.

3D computational model of all bones in the wrist/hand permitted simulation of five major motions—wrist flexion/extension, radial/ulnar deviation, and clenched fist. Shown are the array of tensile elements representing ligaments and capsule, as well as muscle force vectors for the desired motions. SL (scapholunate) separation (interval) predicted by the model for one motion compared well to an experimental study showing the instability induced by an injured (cut) SL ligament and returned stability by a clinical repair procedure, MBT (Modified Brunelli technique).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Abbreviations

DRC:

Dorsal radiocarpal

ECRB:

Extensor carpi radialis brevis

ECRL:

Extensor carpi radialis longus

ECU:

Extensor carpi ulnaris

FCR:

Flexor carpi radialis

FCU:

Flexor carpi ulnaris

FDP:

Flexor digitorum profundus

FDS:

Flexor digitorum superficialis

LT:

Lunotriquetral

MBT:

Modified Brunelli technique

RL:

Radiolunate

SL(L):

Scapholunate (ligament)

References

  1. Alonso-Rasgado T, Zhang QH, Jiminez-Cruz D, Bailey C, Pinder E, Madaleson A, Talwalkar. Evaluation of the performance of three tenodesis techniques for the treatment of scapholunate instability – flexion-extension and radial-ulnar deviation. Med Biol Eng Comput 56:1091–1105, 2018. (DOI: https://doi.org/10.1007/s11517-017-1748-1)

  2. Bajuri MN, Kadir MRA (2013) Finite element modelling of the wrist joint affected by rheumatoid arthritis. In: Bajuri MN, Kadir MRA (eds) Computational biomechanics of the wrist joint. Springer-Verlag, Berlin, pp 41–58

    Chapter  Google Scholar 

  3. Bisneto EN, Freitas MC, de Paula EJ, Mattar R Jr, Zumiotti AV (2011) Comparison between proximal row carpectomy and four-corner fusion for treating osteoarthrosis following carpal trauma: a prospective randomized study. Clinics (Sao Paulo) 66(1):51–55. https://doi.org/10.1590/S1807-59322011000100010

    Article  Google Scholar 

  4. Dvinskikh NA, Blankevoort L, Strackee SD, Grimbergen CA, Streekstra GJ (2011) The effect of lunate position on range of motion after a four-corner arthrodesis – a biomechanical simulation study. J Biomech 44:1387–1392. https://doi.org/10.1016/j.jbiomech.2010.12.025

    Article  CAS  PubMed  Google Scholar 

  5. Fischli S, Sellens RW, Beek M, Pichora DR (2009) Simulation of extension, radial and ulnar deviation of the wrist with a rigid body spring model. J Biomech 42(9):1363–1366. https://doi.org/10.1016/j.jbiomech.2009.03.008

    Article  CAS  PubMed  Google Scholar 

  6. Fisk JP, Wayne JS (2009) Development and validation of a computational musculoskeletal model of the elbow and forearm. Ann Biomed Eng 37(4):803–812. https://doi.org/10.1007/s10439-009-9637-x)

    Article  PubMed  Google Scholar 

  7. Garcia-Elias M, Geissler W (2005) Green’s operative hand surgery, 5th ed., vol. Vo. 1. Elsevier

  8. Hsu JW, Kollitz KM, Jegapragasan M, Huang JI (2014) Radiographic evaluation of the modified brunelli technique versus a scapholunotriquetral transosseous tenodesis technique for scapholunate dissociation. J Hand Surg Am 39(6):1041–1049. https://doi.org/10.1016/j.jhsa.2014.03.005

    Article  PubMed  Google Scholar 

  9. Iaquinto JM, Wayne JS (2010) Computational model of the lower leg and foot/ankle complex – application to arch stability. J Biomech Eng 132(2):021009. https://doi.org/10.1115/1.4000939

    Article  PubMed  Google Scholar 

  10. Iwamoto A, Morris RP, Andersen C, Patterson RM, Viegas SF (2006) An anatomic and biomechanic study of the wrist extensor retinaculum septa and tendon compartments. J Hand Surg Am 31(6):896–903. https://doi.org/10.1016/j.jhsa.2006.02.026

    Article  PubMed  Google Scholar 

  11. Iwasaki N, Genda E, Barrance PJ, Minami A, Kaneda K, Chao EY (1998) Biomechanical analysis of limited intercarpal fusion for the treatment of Kienböck’s disease: a three-dimensional theoretical study. J Orthop Res 16(2):256–263. https://doi.org/10.1002/jor.1100160213

    Article  CAS  PubMed  Google Scholar 

  12. Johnson JE, Lee P, McIff TE, Toby EB, Fischer KJ (2013) Effectiveness of surgical reconstruction to restore radiocarpal joint mechanics after scapholunate injury: An in vivo modeling study. J Biomech 46:1548–1553. https://doi.org/10.1016/j.jbiomech.2013.03.020

    Article  PubMed  PubMed Central  Google Scholar 

  13. Jones WA (1988) Beware the sprained wrist: the incidence and diagnosis of scapholunate instability. J Bone Joint Surg 70B:293–297

    Article  Google Scholar 

  14. Kobayashi M, Berger RA, Nagy L, Linscheid RL, Uchiyama S, Ritt M, An KN (1997) Normal kinematics of carpal bones – a three-dimensional analysis of carpal bone motion relative to the radius. J Biomech 30(8):787–793. https://doi.org/10.1016/S0021-9290(97)00026-2)

    Article  CAS  PubMed  Google Scholar 

  15. Lawand A, Foulkes GD (2003) The “clenched pencil” view: a modified clenched fist scapholunate stress view. J Hand Surg Am. 28(3):414–418. https://doi.org/10.1053/jhsu.2003.50046

    Article  PubMed  Google Scholar 

  16. Lee SK, Zlotolow DA, Sapienza A, Karia R, Yao J (2014) Biomechanical comparison of 3 methods of scapholunate ligament reconstruction. J Hand Surg Am. 39(4):646–650. https://doi.org/10.1016/j.jhsa.2013.12.033

    Article  Google Scholar 

  17. Levangie PK, Norkin CC (2011) Joint structure and function: a comprehensive analysis, 5th edn. F. A. Davis Company

  18. Liacouras PC, Wayne JS (2007) Computational model to predict mechanical function of joints – application to the lower leg with simulation of two cadaver studies. J Biomech Eng 129(6):811–817. https://doi.org/10.1115/1.2800763

    Article  PubMed  Google Scholar 

  19. Links AC, Chin SH, Waitayawinyu T, Trumble TE (2008) Scapholunate interosseous ligament reconstruction: results with a modified Brunelli technique versus four-bone weave. J Hand Surg Am. 33(6):850–856. https://doi.org/10.1016/j.jhsa.2008.02.010

  20. Loren GJ, Lieber RL (1995) Tendon biomechanical properties enhance human wrist muscle specialization. J Biomech 28(7):791–799. https://doi.org/10.1016/0021-9290(94)00137-S)

    Article  CAS  PubMed  Google Scholar 

  21. Majors BJ, Wayne JS (2011) Development and validation of a computational model for investigation of wrist biomechanics. Ann Biomed Eng 39(11):2807–2815. https://doi.org/10.1007/s10439-011-0361-y)

    Article  PubMed  Google Scholar 

  22. Manal K, Lu X, Nieuwenhuis MK, Helders PJ, Buchanan TS (2002) Force transmission through the juvenile idiopathic arthritic wrist: a novel approach using a sliding rigid body spring model. J Biomech 35(1):125–133. https://doi.org/10.1016/S0021-9290(01)00108-7)

    Article  PubMed  Google Scholar 

  23. Nanno M, Patterson RM, Viegas SF (2006) Three-dimensional imaging of the carpal ligaments. Hand Clin 22:399–412. https://doi.org/10.1016/j.hcl.2006.08.003

    Article  PubMed  Google Scholar 

  24. Nikolopoulos FV, Apergis EP, Poulilios AD, Papagelopoulos PJ, Zoubos AV, Kefalas VA (2011) Biomechanical properties of the scapholunate ligament and the importance of its portions in the capitate intrusion injury. Clin Biomech 26(8):819–823. https://doi.org/10.1016/j.clinbiomech.2011.04.009

    Article  Google Scholar 

  25. Pervaiz K, Bowers WH, Isaacs JE, Owen JR, Wayne JS (2009) Range of motion effects of distal pole scaphoid excision and triquetral excision after radioscapholunate fusion: a cadaver study. J Hand Surg Am. 34(5):832–837. https://doi.org/10.1016/j.jhsa.2009.02.007

    Article  PubMed  Google Scholar 

  26. Picha BM, Konstantakos EK, Gordon DA (2012) Incidence of bilateral scapholunate dissociation in symptomatic and asymptomatic wrists. J Hand Surg [Am] 37(6):1130–1135. https://doi.org/10.1016/j.jhsa.2012.03.020

    Article  Google Scholar 

  27. Pollock PJ, Sieg RN, Baechler MF, Scher D, Zimmerman NB, Dubin NH (2010) Radiographic evaluation of the modified Brunelli technique versus the blatt capsulodesis for scapholunate dissociation in a cadaver model. J Hand Surg Am. 35(10):1589–1598. https://doi.org/10.1016/j.jhsa.2010.06.029

    Article  PubMed  Google Scholar 

  28. Schuind FL, Cooney WP, Linscheid RL, An KN, Chao EY (1995) Force and pressure transmission through the normal wrist. A theoretical two-dimensional study in the posteroanterior plane. J Biomech 28(5):587–601. https://doi.org/10.1016/0021-9290(94)00093-J)

    Article  CAS  PubMed  Google Scholar 

  29. Slutsky DJ (2010) Principles and practice of wrist surgery. Saunders Elsevier

  30. Taruc-Uy R, Lynch S (2013) Diagnosis and treatment of osteoarthritis. Prim Care Clin Off Pract 40(4):821–836. https://doi.org/10.1016/j.pop.2013.08.003

    Article  Google Scholar 

  31. Tremols EJ (2014) Design and validation of a computational model of study of schapholunate joint kinematics. M.S. Thesis, Virginia Commonwealth University

  32. Upal MA, Crisco JJ, Moore DC, Sonenblum SE, Wolfe SW (2006) In vivo elongation of the palmar and dorsal scapholunate interosseous ligament. J Hand Surg Am. 31(8):1326–1332. https://doi.org/10.1016/j.jhsa.2006.06.005

    Article  PubMed  Google Scholar 

  33. Viegas SF, Yamaguchi S, Boyd NL, Patterson RM (1999) The dorsal ligaments of the wrist: anatomy, mechanical properties, and function. J Hand Surg Am. 24(3):456–468. https://doi.org/10.1053/jhsu.1999.0456

    Article  CAS  PubMed  Google Scholar 

  34. Watson HK, Ballet FL (1984) The SLAC wrist – scapholunate advanced collapse pattern of degenerative arthritis. J Hand Surg Am. 9(3):358–365. https://doi.org/10.1016/S0363-5023(84)80223-3)

    Article  CAS  PubMed  Google Scholar 

  35. Wayne JS, Mir A (2015) Application of a three-dimensional computational wrist model to proximal row carpectomy. J Biomech Eng 137(6):061001. https://doi.org/10.1115/1.4029902

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors wish to thank Dr. Curtis Hayes and the Department of Radiology at Virginia Commonwealth University for their assistance with the CT image capture, Nathan J. Veilleux for preparation of hand/wrist figures, and M. Tyler Perez for additional model measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jennifer S. Wayne.

Ethics declarations

Ethical approval was not required.

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wayne, J.S., Tremols, E.J. Computational wrist analysis of functional restoration after scapholunate dissociation repair. Med Biol Eng Comput 57, 1465–1479 (2019). https://doi.org/10.1007/s11517-019-01971-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11517-019-01971-6

Keywords

Navigation