Skip to main content

Advertisement

Log in

An iterative damped least-squares algorithm for simultaneously monitoring the development of hemorrhagic and secondary ischemic lesions in brain injuries

  • Original Article
  • Published:
Medical & Biological Engineering & Computing Aims and scope Submit manuscript

Abstract

Electrical impedance tomography (EIT) is a non-invasive and real-time imaging method that has the potential to be used for monitoring intracerebral hemorrhage (ICH). Recent studies have proposed that ischemia secondary to ICH occurs simultaneously in the brain. Real-time monitoring of the development of hemorrhage and risk of secondary ischemia is crucial for clinical intervention. However, few studies have explored the performance of EIT monitoring in cases where hemorrhage and secondary ischemia exist. When these lesions get close to each other, or their conductivity and volume changes differ greatly, it becomes challenging for dynamic EIT algorithms to simultaneously reconstruct subtle injuries. To address this, an iterative damped least-squares (IDLS) algorithm is proposed in this study. The quality of the IDLS algorithm was assessed using blur radius and temporal response during computer simulation and a phantom 3D head-shaped model where bidirectional disturbance targets were simulated. The results showed that the IDLS algorithm enhanced contrast and concurrently reconstructed bidirectional disturbance targets in images. Moreover, it showed superior performance in decreasing the blur radius and was time cost-effective. With further improvement, the IDLS algorithm has the potential to be used for monitoring the development of hemorrhage and risk of ischemia secondary to ICH.

(a) and (b) are simulation images of bidirectional disturbance targets with different change ratios of volume (Vr) and conductivity (σr) based on the damped least-squares (DLS) algorithm and iterative damped least-squared (IDLS) algorithm, respectively. (c) shows the performance metrics of blur radius and temporal response with different volume ratio (corresponding to Vr). (d) shows the performance metrics of blur radius and temporal response with different conductivity change percentage (corresponding to σr).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Adler A, Arnold JH, Bayford R, Borsic A, Brown B, Dixon P, Faes TJ, Frerichs I, Gagnon H, Garber Y, Grychtol B, Hahn G, Lionheart WR, Malik A, Patterson RP, Stocks J, Tizzard A, Weiler N, Wolf GK (2009) GREIT: a unified approach to 2D linear EIT reconstruction of lung images. Physiol Meas 30(6):S35–S55. https://doi.org/10.1088/0967-3334/30/6/S03

    Article  PubMed  Google Scholar 

  2. Andrews CM, Jauch EC, Hemphill JR, Smith WS, Weingart SD (2012) Emergency neurological life support: intracerebral hemorrhage. Neurocrit Care 17(Suppl 1):S37–S46. https://doi.org/10.1007/s12028-012-9757-2

    Article  PubMed  Google Scholar 

  3. Avis NJ, Barber DC (1994) Image reconstruction using non-adjacent drive configurations. Physiol Meas 15(Suppl 2a):A153–A160. https://doi.org/10.1088/0967-3334/15/2A/020

    Article  PubMed  Google Scholar 

  4. Barber DC, Brown BH (1988) Errors in reconstruction of resistivity images using a linear reconstruction technique. Clin Phys Physiol Meas 9(Suppl A):101–104. https://doi.org/10.1088/0143-0815/9/4A/017

    Article  PubMed  Google Scholar 

  5. Boverman G, Kao TJ, Wang X, Ashe JM, Davenport DM, Amm BC (2016) Detection of small bleeds in the brain with electrical impedance tomography. Physiol Meas 37(6):727–750. https://doi.org/10.1088/0967-3334/37/6/727

    Article  PubMed  Google Scholar 

  6. Braun F, Proenca M, Sola J, Thiran J, Adler A (2017) A versatile noise performance metric for electrical impedance tomography algorithms. IEEE Trans Biomed Eng 64(10):2321–2330. https://doi.org/10.1109/TBME.2017.2659540

    Article  PubMed  Google Scholar 

  7. Dai M, Wang L, Xu C, Li L, Gao G, Dong X (2010) Real-time imaging of subarachnoid hemorrhage in piglets with electrical impedance tomography. Physiol Meas 31(9):1229–1239. https://doi.org/10.1088/0967-3334/31/9/012

    Article  PubMed  Google Scholar 

  8. Dai M, Li B, Hu S, Xu C, Yang B, Li J, Fu F, Fei Z, Dong X (2013) In vivo imaging of twist drill drainage for subdural hematoma: a clinical feasibility study on electrical impedance tomography for measuring intracranial bleeding in humans. PLoS One 8(1):e55020. https://doi.org/10.1371/journal.pone.0055020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Dowrick T, Blochet C, Holder D (2015) In vivo bioimpedance measurement of healthy and ischaemic rat brain: implications for stroke imaging using electrical impedance tomography. Physiol Meas 36(6):1273–1282. https://doi.org/10.1088/0967-3334/36/6/1273

    Article  CAS  PubMed  Google Scholar 

  10. Dowrick T, Blochet C, Holder D (2016) In vivo bioimpedance changes during haemorrhagic and ischaemic stroke in rats: towards 3D stroke imaging using electrical impedance tomography. Physiol Meas 37(6):765–784. https://doi.org/10.1088/0967-3334/37/6/765

    Article  CAS  PubMed  Google Scholar 

  11. Frerichs I, Amato MBP, van Kaam AH, Tingay DG, Zhao Z, Grychtol B, Bodenstein M, Gagnon H, Böhm SH, Teschner E, Stenqvist O, Mauri T, Torsani V, Camporota L, Schibler A, Wolf GK, Gommers D, Leonhardt S, Adler A (2016) Chest electrical impedance tomography examination, data analysis, terminology, clinical use and recommendations: consensus statement of the TRanslational EIT developmeNt stuDy group. Thorax 72(1):83–93. https://doi.org/10.1136/thoraxjnl-2016-208357

    Article  PubMed  PubMed Central  Google Scholar 

  12. Fu F, Li B, Dai M, Hu S, Li X, Xu C, Wang B, Yang B, Tang M, Dong X, Fei Z, Shi X (2014) Use of electrical impedance tomography to monitor regional cerebral edema during clinical dehydration treatment. PLoS One 9(12):e113202. https://doi.org/10.1371/journal.pone.0113202

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Gregoire SM, Charidimou A, Gadapa N, Dolan E, Antoun N, Peeters A, Vandermeeren Y, Laloux P, Baron JC, Jager HR, Werring DJ (2011) Acute ischaemic brain lesions in intracerebral haemorrhage: multicentre cross-sectional magnetic resonance imaging study. BRAIN 134(Pt 8):2376–2386. https://doi.org/10.1093/brain/awr172

    Article  PubMed  Google Scholar 

  14. Grychtol B, Adler A (2013) FEM electrode refinement for electrical impedance tomography. Conf Proc IEEE Eng Med Biol Soc 2013:6429–6432. https://doi.org/10.1109/EMBC.2013.6611026

    Article  PubMed  Google Scholar 

  15. Islam MN, Kuddus R, Chowdhury NS, Akhter MD, Salahuddin G, Parvin S (2014) Radiologic evaluation of hyperacute brain infarction: a review. Mymensingh Med J 23(3):621–635

    CAS  PubMed  Google Scholar 

  16. Javaherian A, Movafeghi A, Faghihi R, Yahaghi E (2013) An exhaustive criterion for estimating quality of images in electrical impedance tomography with application to clinical imaging. J Vis Commun Image Represent 24(7):773–785. https://doi.org/10.1016/j.jvcir.2013.05.003

    Article  Google Scholar 

  17. Kang DW, Han MK, Kim HJ, Yun SC, Jeon SB, Bae HJ, Kwon SU, Kim JS (2012) New ischemic lesions coexisting with acute intracerebral hemorrhage. Neurology 79(9):848–855. https://doi.org/10.1212/WNL.0b013e3182648a79

    Article  PubMed  Google Scholar 

  18. Kimberly WT, Gilson A, Rost NS, Rosand J, Viswanathan A, Smith EE, Greenberg SM (2009) Silent ischemic infarcts are associated with hemorrhage burden in cerebral amyloid angiopathy. Neurology 72(14):1230–1235. https://doi.org/10.1212/01.wnl.0000345666.83318.03

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Li H, Chen R, Xu C, Liu B, Tang M, Yang L, Dong X, Fu F (2017) Unveiling the development of intracranial injury using dynamic brain EIT: an evaluation of current reconstruction algorithms. Physiol Meas 38(9):1776–1790. https://doi.org/10.1088/1361-6579/aa8016

    Article  PubMed  Google Scholar 

  20. Li Y, Zhang D, Liu B, Jin Z, Duan W, Dong X, Fu F, Yu S, Shi X (2018) Noninvasive cerebral imaging and monitoring using electrical impedance tomography during Total aortic arch replacement. J Cardiothorac Vasc Anesth 32:2469–2476. https://doi.org/10.1053/j.jvca.2018.05.002

    Article  PubMed  Google Scholar 

  21. Mamatjan Y, Borsic A, Gursoy D, Adler A (2013) An experimental clinical evaluation of EIT imaging with l1 data and image norms. Physiol Meas 34(9):1027–1039. https://doi.org/10.1088/0967-3334/34/9/1027

    Article  PubMed  Google Scholar 

  22. Manwaring PK, Moodie KL, Hartov A, Manwaring KH, Halter RJ (2013) Intracranial electrical impedance tomography: a method of continuous monitoring in an animal model of head trauma. Anesth Analg 117(4):866–875. https://doi.org/10.1213/ANE.0b013e318290c7b7

    Article  PubMed  PubMed Central  Google Scholar 

  23. Markovsky I, Van Huffel S (2007) Overview of total least-squares methods. Signal Process 87(10):2283–2302. https://doi.org/10.1016/j.sigpro.2007.04.004

    Article  Google Scholar 

  24. Menon RS, Kidwell CS (2009) Neuroimaging demonstration of evolving small vessel ischemic injury in cerebral amyloid angiopathy. Stroke 40(12):e675–e677. https://doi.org/10.1161/STROKEAHA.109.552935

    Article  PubMed  Google Scholar 

  25. Menon RS, Burgess RE, Wing JJ, Gibbons MC, Shara NM, Fernandez S, Jayam-Trouth A, German L, Sobotka I, Edwards D, Kidwell CS (2012) Predictors of highly prevalent brain ischemia in intracerebral hemorrhage. Ann Neurol 71(2):199–205. https://doi.org/10.1002/ana.22668

    Article  PubMed  PubMed Central  Google Scholar 

  26. Prabhakaran S, Naidech AM (2012) Ischemic brain injury after intracerebral hemorrhage: a critical review. Stroke 43(8):2258–2263. https://doi.org/10.1161/STROKEAHA.112.655910

    Article  PubMed  Google Scholar 

  27. Prabhakaran S, Gupta R, Ouyang B, John S, Temes RE, Mohammad Y, Lee VH, Bleck TP (2010) Acute brain infarcts after spontaneous intracerebral hemorrhage: a diffusion-weighted imaging study. Stroke 41(1):89–94. https://doi.org/10.1161/STROKEAHA.109.566257

    Article  PubMed  Google Scholar 

  28. Sadleir RJ, Tang T (2009) Electrode configurations for detection of intraventricular haemorrhage in the premature neonate. Physiol Meas 30(1):63–79. https://doi.org/10.1088/0967-3334/30/1/005

    Article  CAS  PubMed  Google Scholar 

  29. Shi X, Dong X, Shuai W, You F, Fu F, Liu R (2006) Pseudo-polar drive patterns for brain electrical impedance tomography. Physiol Meas 27(11):1071–1080. https://doi.org/10.1088/0967-3334/27/11/002

    Article  PubMed  Google Scholar 

  30. Tang C, You F, Cheng G, Gao D, Fu F, Yang G, Dong X (2008) Correlation between structure and resistivity variations of the live human skull. IEEE Trans Biomed Eng 55(9):2286–2292. https://doi.org/10.1109/TBME.2008.923919

    Article  PubMed  Google Scholar 

  31. Tang T, Weiss MD, Borum P, Turovets S, Tucker D, Sadleir R (2016) In vivo quantification of intraventricular hemorrhage in a neonatal piglet model using an EEG-layout based electrical impedance tomography array. Physiol Meas 37(6):751–764. https://doi.org/10.1088/0967-3334/37/6/751

    Article  PubMed  PubMed Central  Google Scholar 

  32. Xu CH, Wang L, Shi XT, You FS, Fu F, Liu RG, Dai M, Zhao ZW, Gao GD, Dong XZ (2010) Real-time imaging and detection of intracranial haemorrhage by electrical impedance tomography in a piglet model. J Int Med Res 38(5):1596–1604. https://doi.org/10.1177/147323001003800504

    Article  CAS  PubMed  Google Scholar 

  33. Xu C, Dai M, You F, Shi X, Fu F, Liu R, Dong X (2011) An optimized strategy for real-time hemorrhage monitoring with electrical impedance tomography. Physiol Meas 32(5):585–598. https://doi.org/10.1088/0967-3334/32/5/007

    Article  PubMed  Google Scholar 

  34. Xuetao S, Fusheng Y, Feng F, Ruigang L, Xiuzhen D (2005) High precision multifrequency electrical impedance tomography system and preliminary imaging results on saline tank. Conf Proc IEEE Eng Med Biol Soc 2:1492–1495. https://doi.org/10.1109/IEMBS.2005.1616714

    Article  PubMed  Google Scholar 

  35. Yang L, Zhang G, Song J, Dai M, Xu C, Dong X, Fu F (2016) Ex-vivo characterization of bioimpedance spectroscopy of normal, ischemic and hemorrhagic rabbit brain tissue at frequencies from 10 Hz to 1 MHz. Sensors (Basel) 16(11):1942. https://doi.org/10.3390/s16111942

    Article  CAS  Google Scholar 

  36. Yorkey TJ, Webster JG, Tompkins WJ (1987) Comparing reconstruction algorithms for electrical impedance tomography. IEEE Trans Biomed Eng 34(11):843–852

    Article  CAS  PubMed  Google Scholar 

  37. Zhou Z, Sato DSG, Dowrick T, Avery J, Sun Z, Xu H, Holder DS (2015) Comparison of total variation algorithms for electrical impedance tomography. Physiol Meas 36(6):1193–1209. https://doi.org/10.1088/0967-3334/36/6/1193

    Article  PubMed  Google Scholar 

  38. Zou Y, Guo Z (2003) A review of electrical impedance techniques for breast cancer detection. Med Eng Phys 25(2):79–90

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This study was funded by the National Nature Science Foundation of China (Grant 51837011, 31771073, 61771475).

Author information

Authors and Affiliations

Authors

Contributions

Xuechao Liu and Haoting Li designed the experiments; Xuechao Liu carried out the experiments, analyzed data, and wrote the paper; Feng Fu and Bin Yang contributed the analysis tools.

Corresponding author

Correspondence to Feng Fu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, X., Li, H., Ma, H. et al. An iterative damped least-squares algorithm for simultaneously monitoring the development of hemorrhagic and secondary ischemic lesions in brain injuries. Med Biol Eng Comput 57, 1917–1931 (2019). https://doi.org/10.1007/s11517-019-02003-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11517-019-02003-z

Keywords

Navigation