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Abstract—This paper addresses the task of nuclei segmentation
in high-resolution histopathological images. We propose an auto-
matic end-to-end deep neural network algorithm for segmenta-
tion of individual nuclei. A nucleus-boundary model is introduced
to predict nuclei and their boundaries simultaneously using a
fully convolutional neural network. Given a color normalized
image, the model directly outputs an estimated nuclei map and a
boundary map. A simple, fast and parameter-free post-processing
procedure is performed on the estimated nuclei map to produce
the final segmented nuclei. An overlapped patch extraction and
assembling method is also designed for seamless prediction of
nuclei in large whole-slide images. We also show the effectiveness
of data augmentation methods for nuclei segmentation task. Our
experiments showed our method outperforms prior state-of-the-
art methods. Moreover, it is efficient that one 1000X1000 image
can be segmented in less than 5 seconds. This makes it possible
to precisely segment the whole-slide image in acceptable time.

Index Terms—deep learning, nulcei segmentation, fully convo-
lutional neural network, data augmentation

I. INTRODUCTION

W ITH the progress of image processing and pat-
tern recognition techniques, computer-assisted diag-

nosis(CAD) has been widely utilized to assist medical pro-
fessionals to interpret medical images. Digital pathology,as
an important aspect of CAD application, is earning more
and more attention from both image analysis researchers and
pathologists due to the advent of whole-slide imaging. Its
aim is to acquire, manage and interpret pathology information
generated from digitized glass slides, among which the devel-
opment of computational algorithms to automatically analyze
digital tissue images is the key. The potential applications of
digital pathology span a wide range such as segmentation of
desired regions or objects, counting normal or cancel cells,
recognizing tissue structures, classifying cancer grades, prog-
nosis of cancers, etc [1, 2]. It is able to dramatically decrease
human’s workload and has the potential to work better than
pathologists due to its objectiveness in the interpretation.

As an essential part of digital pathology, histopathology
image analysis is playing increasingly important role in cancer
diagnosis, which can provide direct and reliable evidence to

* Equal contribution. #Corresponding author.

diagnose the grade and type of cancer. This paper deals with
nuclei segmentation, an important step in histopathological
image analysis. The purpose of nuclei semgentation is not only
counting the number of nuclei but also obtaining the detailed
information of each nucleus. So unlike nuclei detection, here
the outputs are the contour of each nucleus instead of only
the position of their central points. Hence we can exactly
extract each nucleus from the image and make it available for
further analysis. For example, the features of the individual
nucleus and the distribution of nuclei clusters can be used to
grade and classify status of breast cancers [3, 4]. Because
of appearance variation such as color, shape, and texture,
nuclei segmentation from histopathological images could be
very challenging, as illustrated in Fig.1, in which it is very
challenging even for human to recognize and segment all
nuclei within the images. Fig.1(a) and Fig.1(b) illustrate two
histopathological images from different organs. Fig.1(c) and
Fig.1(d) are two histopathological images from same organ
but have different cancer grade.

The study of nuclei segmentation in histopathological im-
ages can be traced back to 10 years ago. A large number of
methods have been proposed to pursue accurate segmentation
on images of a variety of categories. The procedure of most
traditional nuclei segmentation methods can be divided into
two separate steps: first,detecting the nuclei and then obtaining
each nucleus’ contour. The detection step is expected to
generate the area of nuclei or the seed of each nucleus.
One popular and convenient method to detect the nucleus is
intensity thresholding as used in Otsu’s method[5]. However,
it has an obvious limitation: it only works under the scenario
that all the nuclei in the images have consistent intensity
differences against the background. Another popular approach
for nuclei detection is clustering including K-mean clusting[6],
Grab Cut[7] and etc. Furthermore, a few filtering based on
methods have been proposed by utilizing the features of
the nuclei[8, 9]. All of above methods have one common
weakness: they are only effective for one or a few specific
types of nuclei or images and are usually highly sensitive
to manually set parameters. Since the appearances of nuclei
are so diverse that we can hardly develop a single model or
method suitable for all these different images. In recent years,
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supervised learning based approaches are becoming more and
more attractive. They classify each pixel into one of two
categories: nuclei or background[10, 11, 12]. After the nuclei
detection stage yields the nuclei area, the next step would be
splitting the touching and overlapped nuclei areas. This could
be achieved by methods such as bottleneck detection[13] and
ellipse fitting[14, 15]. If the seed of a nucleus is generated,
its contour could be obtained by using marker controlled
watershed[9, 16] or region growing[17].

Recently, deep learning based methods are becoming in-
creasingly popular in image segmentation due to their domi-
nating performance in many tasks of computer vision. They
have significantly impacted all the research areas in com-
puter vision such as object classification, object detection
and segmentation. Since 2014, numerous convolutional neural
network based image segmentation methods have been pro-
posed. Long. et al firstly introduced fully convolutional neural
network (FCN)[18] to semantic segmentation. Compared to
prior models, it is demonstrated that the FCN algorithm is
much more efficient and accurate. Converting fully connected
layers into convolutional neural networks makes it possible to
predict the heatmap of the objects in the image that needs to
be segmented. U-net [19], an FCN based network architecture
won the Grand Challenge for Computer-Automated Detection
of Caries in Bitewing Radiography at ISBI 2015. Later, a skip-
architecture first introduced in residual networks [20] is also
applied to fuse different levels of semantic information.

Inspired by the U-net algorithm[19], we propose to apply
the FCN network to the nuclei segmentation problem. Current
deep learning methods for nuclei segmentation usually need
complex post-processing procedure to obtain the final nuclei
boundries. Naylor [21] employs FCN to discriminate the nuclei
from background and then applies the watershed method to

(a) (b)

(c) (d)

Fig. 1: (a)Colon cancer (b)Prostate cancer (c)Breast cancer
(grade I) (d)Breast cancer(grade III)

split the nuclei. However the resulting boundaries are not
accurate. Xing [17] proposed a sophisticated shape deforma-
tion method to generate each nucleus’s boundary. Kumar[22]
designed a CNN3 model to predict the nuclei and its boundary
from the image. But a time consuming post-processing step is
needed. Here we designed an end-to-end fully convolutional
neural network architecture for nuclei segmentation. Unlike
prior binary classifiers [10, 11, 12], which only discriminate
nuclei against the background, our nuclei-boundary segmenta-
tion model predicts the nuclei and their contours at the same
time. Due to the accurate prediction of nucleus and boundary
in our approach, the final segmentation can be generated
by a simple and fast post-processing procedure. To segment
the whole-slide image, a pixel-wise segmentation strategy is
necessary. However the border area of each patch cannot be
predicted accurately because of lacking contextual informa-
tion. A seamless patch extraction and assembling method is
proposed to handle this problem. The main contributions of
this paper are as follows:

• We propose a nuclei-boundary model to explicitly de-
tect nuclei and their boundaries simultaneously from
histopathology images. Detecting boundary is able to
improve the accuracy of nuclei detection and help split
the touched and overlapped nuclei. Given the raw seg-
mentation results by our nuclei-boundary model, only a
simple dilation operation and noise removing steps are
needed to produce the final segmentation results.

• We develop an effective approach to segment extra-large
high-resolution images that U-net cannot handle due
to limited GPU memory using a seamless patch-wise
segmentation. A weighted loss map is utilized to train
the model and a vote mechanism is used to assemble the
patches.

• Extensive studies on the effects of a variety of data aug-
mentation methods for nuclei segmentation are provided.

• We introduce four evaluation criteria for more accurate
nuclei segmentation performance evaluation: missing de-
tection rate, false detection rate, under-segmentation rate,
and over-segmentation rate. They are designed to help
the pathologist obtain more in-depth understanding of
the performance of automatic segmentation methods and
choose the right one for their specific application.

II. METHOD

A. Overview

Our nuclei segmentation method adopts an end-to-end deep
learning framework. The only preprocessing procedure is
image color normalization. In the training phase, without
extracting any features, even the H-channel, we directly ap-
ply the histopathology images in normalized RGB colors
to the deep neural network to train the nucleus-boundary
model. During the testing phase, the prediction result of raw
normalized images yielded by the nucleus-boundary detector
shows clear inside nuclei area and the boundaries. At last,
we will obtain the area of each nucleus via a simple, fast
and parameterless post-processing procedure. Fig.2 shows the
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procedure to segment nuclei from color normalized images in
our algorithm.

Fig. 2: The overview of segmenting nuclei on histopathological
images.

B. Data Preprocessing

H&E stain is the most widely used stain protocol in medical
diagnosis. Typically, the nuclei of cells are stained to blue by
Haematoxylin while cytoplasm is colored to pink by Eosin.
But in practice, the color of H&E stained images could vary
a lot due to variation in the H&E reagents, staining process,
scanner and the specialist who performs the staining, as shown
in Fig.1. A few H&E stain normalization methods[23, 24, 25]
have been proposed to eliminate the negative interference
caused by color variation. We tried two of them[23, 25] to
normalize the raw H&E stained images. For our segmenta-
tion algorithm, we did not find any considerable difference
between these two normalization methods. Particularly, the
result shown in experiment section III is generated based on
the images normalized by the method in [23]. Given a target
image, this method is able to convert one image’s color into the
target image’s color space based on sparse non-negative matrix
factorization(NMF). We choose one best stained H&E image
as the target and convert other images into its color space.
According to the recommendation in [23], the hyper-parameter
λ should be set between 0.01 and 0.1. In our experiment, λ
is set to 0.1.

Intuitively, the pure Haematoxylin-channel grayscale image
would be much easier than RGB images to distinguish the
foreground (nuclei) from the background (cytoplasm). A large
number of nuclei segmentation methods[16, 26, 27] employ
some deconvolution algorithms to extract the H-channel from
H&E stained images. However, based on our experiments,
we noticed that our deep fully convolutional neural network
extracts the nuclei from raw RGB images better than from
H-channel grayscale images. The reason would be that the H-
channel might miss some information that might be helpful for
distinguishing nuclei and the cytoplasm. Given well-labelled
training images, the deep neural network can then learn the
optimal way to extract the features that discriminate between
each category of samples. So we skip extracting H-channel
and directly apply the RGB color image as the input to our
deep neural network.

C. Nucleus-boundary model

Traditional supervised nuclei segmentation methods usually
apply a binary classifier to segment the nuclei area and the
background area by classifying each pixel. These methods
usually predict the category of the central pixel given a small
patch. To segment the whole image, it needs to extract all the
sliding windows(patches) with stride of 1 pixel and predict
each of these patches. The most limitation of this strategy is
high computational complexity. For example, if there is an
image of size 1000X1000 pixel, this method needs to process
one million sliding windows in order to segment this single
image. Nevertheless, the typical whole slide of histopathology
image may have billions of pixels, making it impossible to
process it in an acceptable time using this strategy. Instead,
our method is based on fully convolutional network (FCN)
framework, which allows predicting the category of all the
pixels of an image with only one pass. The input of the
network is one image, the output is the estimated class map.

The task of nuclei segmentation can be roughly divided into
two stages: the first stage is extracting the foreground(nuclei),
the second stage is segmenting the connected foreground area
into separated nuclei and finding out the boundary of each
nucleus. Our method intends to merge these two steps by
extracting the nuclei and their edges at the same time. That
is the reason why it is named ”nuclei-boundary(NB) model”.
As shown in Fig.3, the output of the NB model has three
channels, each has the same height and width with the input
image. Its values represent the probabilities of each pixel
being background, boundary or inside class, respectively.
The manual annotation for our segmentation problem is the
boundary of each nucleus. A pixel belonging to the boundary
class means that it is on or inside an annotated boundary
and within 2 pixel from the boundary. Pixels of the inside
class are those that are inside annotated boundary but are not
boundary pixels. Correspondingly, the output can be regarded
as an RGB image and the estimated maps of the background,
boundaries and nuclei are represented by red, green and blue,
respectively, as shown in Fig.3. To generate the ternary mask
for training, we apply a morphology operator to each nucleus
to obtain the inside pixels, and then subtract inside pixels
from the nucleus to get boundary pixels.

1) The architecture of our NB network: Fig.3 shows the
network architecture of our algorithm, which consists of a
couple of encoding and decoding layers. The encoding layers
are used to extract different levels of contextual feature maps.
The decoding layers are designed to combine these feature
maps produced by the encoding layers to generate the desired
segmentation maps. Due to the memory limitation of our
GPU, the size of the input layer is set to 128X128 in our
experiments. But we noticed that larger input layer may lead
to better performance. The weight of each convolutional layer
is initialized by glorot uniform[28] and bias is initialized to 0.
The glorot uniform is defined as:

W ∼ U

[
−
√
6

√
nj + nj+1

,

√
6

√
nj + nj+1

]
(1)
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Fig. 3: The structure of our network. The size of each layer is shown in height ∗ width ∗ channels. The height and width
of each layer are not fixed, which are determined by the size of input images. Here we assume the input image is of size
128 ∗ 128.

where W means the initialized weight, nj means the size of
the convolutional layer j.

The scaled exponential linear units(SELUs) [29] activation
function is used in all convolutional layers. SELUs is de-
signed to make the forward neural network(FNN) to have
self-normalizing capability[30]. The FNN using SELUs are
shown to be able to outputperform the ones using explicit
normalization methods, such as batch normalization, layer
normalization, and weight normalization. This is why our
network does not have any normalization layers. The selu
activation function is defined as:

selu(x) = λ

{
x if x < 0

αex − α if x ≤ 0

where λ = 1.0507 and α = 1.6733. The padding property
of each convolutional layer is the ’same’ in order to ensure
it keeps the same size with its previous layer. The size of
all convolutional filters is 3X3. Each convolutional layer is
followed by a dropout layer with 0.2 drop rate. The network
is trained by Adam optimizer[31]. This stochastic optimization
method is able to compute adaptive learning rate for each
parameter. It automatically controls the learning rate along the
training, so it is not necessary to manually set the momentum
and decay.

2) Data Augmentation: Deep learning models often have
millions of parameters so that it needs large-scale sample
dataset to avoid the overfitting problem. In fact, the datasets
of our nuclei segmentation task often contain only tens of
images. Moreover, labeling an 1000*1000 image which con-
tains hundreds of nuclei usually cost a specialist at least 5
hours. Hence it is impossible to manually label sufficient and
nuclei boundaries accurately for training deep learning models.
Data augmentation is an essential approach to overcome the
over-fitting problem caused by lacking samples. The training
samples, i.e.the patches, are randomly extracted from the H&E
stained images in the training datasets. Five augmentation
techniques are used together in our experiments including

random elastic transformation, rescale, affine transformation,
shift, flip and rotate. Each training sample(one patch extracted
from a whole image) as well as the corresponding target are
processed by the data augmentation procedure. Given a train-
ing sample, which is a RGB image I with its corresponding
ground truth Igt, we transform I to I

′
and Igt to I

′

gt. I
′

and
I

′

gt are the real input and target of the neural network. The
rescaling factors are set as a random number between 0.5-1.5.
We employ Simard’s method[32] to do elastic transforming.
Two hyper-parameters α and σ need to be manually set to
control how dramatic the original image is transformed. In our
experiment, α is set to a random number between 100-200, σ
is set to 12.

Besides transforming the input sample, it is necessary to do
the same transformation on targets to maintain consistency.
The one-hot encoding target consists of only binary values.
However, the transformed target has some float-point numbers
caused by bilinear interpolation we used for elastic transfor-
mation. They need to be binarized by the following rules:

Let the value of one pixel is (ti, tb, to), where ti, tb and to
represents the label for inside, boundary and background
respectively.

1. if tb > 0.5, tb = 1, else tb = 0
2. if ti > 0and tb == 0, ti = 1, else ti = 0
3. if ti == 1or tb == 1, to = 1, else to = 0
An example of data augmentation is illustrated in Fig.4.
3) Weighted loss: The U-net[19] model tends to predict

the pixels with full context in the input image, which leads
to generation of a smaller segmentation map than the input
image. The border area of the input image is not predicted
because of lacking enough context information. This strategy
can solve the problem that the prediction of the border area is
not accurate to some extent. One issue of this is that this U-net
defines a fixed-size border area whose size is not changable
without modifying the network structure. However, in practice,
the border area size could vary in different histopathological
images and it mainly depends on the size of the nuclei.
Another limitation is that we have to do some cropping
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(a) (b)

(c) (d)

Fig. 4: Example of data augmentation, (a) one patch extracted
from a normalized image (b) corresponding ground truth of
(a). (c) A training sample generated by data augmentation
procedure based on patch(a). (d) the corresponding ground
truth of (c).

operation in neural network training to make the size of
layers match each other, which might lose useful surrounding
information.

As a trade-off of these issues, we designed a weighted loss
and a scheme for patch extraction and assembling to allow
the neural network to predict an segmentation map of equal
size without concerning the lack of context issue in the border
area.

The model is trained by minimizing the categorical softmax
cross-entropy loss between predictions and targets, which is
described in eq.2:

L =
∑
i

∑
j

Wi,j log(pt(i,j)(i, j)) (2)

where t(i, j) denotes the true label of the pixel at (i,j) position,
pt(i,j)(i, j) is the output of soft-max activation layer which
indicates the probability of the pixel at (i,j) being t(i, j). W
is the proposed weight map, which is defined as:

Wi,j = α
De

i,j

(D
c
i,j +De

i,j)

α =
h · w∑h

i=1

∑w
j=1

De
i,j

Dc
i,j+De

i,j

(3)

where Wi,j is the weight of position i, j, , De
i,j is the distance

from border, Dc
i,j denotes the distance from center.h and w

are the height and width of the map, respectively.
4) Extra-large Image Segmentation Using Overlapped

Patch Extraction and Assembling: Current medical image seg-
mentation algorithms based on U-net and its derivatives has an
unsolved problem for segmenting extra-large high-resolution

histopathological images: due to the limited memory of the
GPU, it is possible to feed the whole slide image into the deep
neural network. It has to be cut into patches and perform patch-
wise training and prediction. However, there is no reported
solution for deal with this issue.

With close examination, we found the the main issue
of U-net algorithm on patch-based segmentation is that the
prediction at the border area is not accurate as demonstrated
in 11. Here we propose an overlapped patch extraction and
assembling method. The patches are extracted by sliding
window with a stride. For assembling, a vote mechanism is
applied to predict each pixel using

P (i, j) =

∑
kWk(i,j)p(k(i, j))∑

kWk(i,j)

where P (i, j) is the final prediction of the pixel at position
(i,j) in an image. k(i, j) means the position of it in the kth
patch.

5) Post-processing: From Fig.6, we can see that the raw
prediction results already show clear inside nucleus areas
and boundaries. Due to this reliable prediction results, we no
longer need the complex region growing algorithms [17, 22]
and splitting algorithms [27] to extract the final segmented
areas. These methods usually strongly rely on manual param-
eter tuning to get good performance and is computationally
demanding. Instead, we use a parameter-free postprocessing
procedure that runs in a negligibly short time. Since our
NB model detects both inside and boundary classes, all we
need is the inside class map. Then the inside class map is
transformed to a binary map using a constant threshold 0.5.
In this way, each connected component in the binary image
indicates the inside area of one nucleus. At the end, in order to
recover the shape, we can simply apply the dilation operation
to each connected component.

III. EXPERIMENT

A. Evaluation criteria

Two level of criteria are usually used to measure the
performance of nuclei segmentation methods: one is object-
level criteria, another is pixel-level criteria. The most com-
mon object-level criteria for object detection tasks include
precision, recall, F1score. precision is defined as:

precision =
TP

TP + FP

Fig. 5: The weighted loss map generated by Eq.3
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recall is defined as:

recall =
TP

FN + TP

F1score considers both of the precision and recall, as shown
in following equation.

F1 = 2 · precision · recall
precision+ recall

where the TP is true positives, FP means false positives
and FN means false negatives. Given a manually labelled
ground truth nucleus Ti, if there is one nucleus Pj in automatic
segmentation result that matches Ti, Pj can be counted as one
TP .
F1 score is the harmonic average of precision and recall

and its value is in the range of [0,1].
We noticed that FN can be caused by two different types of

errors: one is miss-detection(nuclei is predicted as cytoplasm),
another is under-segmentation(Multiple ground truth nuclei are
detected as one nucleus, hence only one of these nuclei ground
truth nucleus has corresponding detected nucleus.).Similarly,
FP consists two types of errors: one is false detection (Cyto-
plasm is detected as nuclei), another is over-segmentation(One
ground-truth nucleus is segmented into several nuclei. Each
of them is a part of the ground truth nucleus and at most
only one among them can be considered as the corresponding
detected nucleus). Let us think about this situation: one
segmentation method is weak on discriminating the nuclei and
cytoplasm while another one is weak on splitting the nuclei
area. But they may have similar precision and recall, even
F1score. Apparently, precision, recall, F1score and their
combination fail to differentiate the performance of these two
segmentation methods. To handle this issue, we introduce four
new criteria to evaluate automatic nuclei segmentation meth-
ods: missing detection rate(MDR), false detection rate(FDR),
under-segmentation rate(USR), over-segmentation rate(OSR),
as shown in Eq. 4.

MDR =
MD

FN + TP

FDR =
FD

TP + FP

USR =
US

P

OSR =
OS

S
(4)

where MD is the number of missing detections, FD indicates
the number of false detections, US means the number of nuclei
which are not detected caused by undersegmentation. P is the
number of ground truth nuclei in the region of TP , which can
be defined as Fn+TP−MD. OS means the number of false
positives caused by oversegmentation and S means the number
of segmented nuclei in the region of TP ’s corresponding
ground truth nuclei, which can be defined as FP +TP +FD.
The combination of MDR and FDR measures the capacity of
discriminating the nuclei and cytoplasm while the combination
of USR and OSR measures the performance of handling
overlapped nuclei area. On the other hand, recall value is
negatively correlated with MD and USR while precision

is negatively correlated with FDR and OSR. These four
criteria are able to help pathologists to select proper automatic
segmentation methods for specific tasks.

The pixel-level criteria are used to measure the accuracy of a
segmentation algorithms in predicting the shape and size of the
detected nuclei. The most essential one is Dice’s coefficient,
which is defined as:

D(X,Y ) = 2
|X ∩ Y |
|X|+ |Y |

(5)

where X indicates a manual segmentation and Y means
its corresponding automatic segmentation. That is, a manual
segmentation is considered as a FP if there is no corresponding
automatic segmentation with a Dice coefficient of at least 0.2.

1) Datasets: We evaluate the performance our method on
three public available nuclei segmentation datasets. One is
a multiple organ H&E stained image dataset[22](MOD). It
consists of 30 images which were captured from 7 organs:
breast, liver, kidney, prostate, bladder, colon and stomach. The
resolution of each image is 1000X1000. Totally, about 21,000
nuclear boundaries are manually annotated. These 30 images
are split into two subsets: the training set with 16 images
composed of 4 from breast, 4 from liver, 4 from kidney and
4 from prostate and the test set with 14 images composed of
2 images from each organ.

The second dataset is the breast cancer histopathology
image dataset(BCD). It contains two subsets: subsetA and
subsetB. SubsetA includes 21 images and subsetB has 18
images. In [9], SubsetA is used to tune the parameters. In a
similar way, we utilize subsetA as the training set and subsetB
as the test set. Since one image may contains thousands of
nuclei, it is impractical to manually label all the training
images. We randomly select five images from subsetA and
crop a 1000*1000 subimage from each of them to build the
training set. It is manually annotated under the supervision of
a specialist.

The third one is also a breast cancer image
dataset(BNS)[21]. It is composed of 33 H&E stained
images of size 512X512 from 7 triple negative breast cancer
patients. There are totally 2754 manually annotated nuclei.

B. Experiment result

Figure 6 shows how our method segments the nuclei step
by step. The color variety is well controlled by the color
normalization procedure. The prediction result shows clear
nuclear areas and nucleus boundaries. In the final segmentation
result and ground truth image, each nucleus is represented by
a different color.

First, We test our method on the MOD dataset. Unfortu-
nately, the dataset publicly provided online doesn’t explicitly
divide the whole dataset into the training set and test set. We
do not know which image belongs to the training set exactly
as introduced in their paper [22]. To make a fair comparison,
we randomly select 16 images from breast, liver, kidney and
prostate. Then we combine the remaining 8 images of these
four types and the 6 images from bladder, colon and stomach
to build the test images. 12000 patches are randomly extracted
from 12 training images to train our model. To eliminate the
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(a) (b) (c) (d)

Fig. 6: (a) examples of original histopathology images; (b) corresponding images after color normalization. (c) raw segmentation
results by our algorithm. (d) final segmentation result.

bias caused by random selection, 5 different training sets and
the corresponding test sets are randomly generated. Then the
model is trained and tested on the 5 pairs of training set
and test set separately. All of the models are trained for 300
epoch in 7.5 hours. For testing, the stride of overlapped patch
extraction is set to 64. The quantitative comparison is listed in
Table I, which demonstrates that our method outperforms the
state-of-the-art method CNN3 as reported in [22] in terms of
both F1 score and Dice’s Coefficient. Moreover, it shows that
the under-segmentation error is much more significant than
over-segmentation error and it achieves a balance between
the false detection error and missing detection error. Figure
7 shows a visual comparison between our method and [22].
As shown in the sample images, our segmentation result has
fewer false negatives and higher accuracy in terms of nuclei
boundaries than [22]. Our method is not only more accurate
but also much faster. It takes about 5 seconds to predict a
1000 * 1000 image by one Nvidia Titan X GPU and the time
used for post-processing is less than 0.1 seconds. Given the
same hardware environment and test images, [22] takes about
4 minutes to predict one image and 80 seconds to do the

post-processing. Additionally, a 10-folder cross-validation is
performed to validate our method. The result is shown in Table
I NB model *.

To show the benefit of our proposed evaluation metrics for
nuclei segmentation, we compared the performance of our
algorithm and the baseline CNN3 over two images with similar
precision and recall, but different segmentation quality. As
shown in Fig. 8, the CNN3 algorithm got similar precision
and recall scores on these two images. From our proposed
criteria, we can find that the segmentation error on the first
image is mainly caused by under-segmentation and false
detections while that it is mainly caused by oversegmentation,
missing detection and false detection in the second image. This
observation can be verified by the sample segmentation result.

Second, we test our method on the BCD dataset.The man-
ually labeled training set consists of five 1000*1000 images.
Instead of training the models from random initialization, we
use the training data to fine-tune the network model trained
on the MOD dataset. Thus the model would adjust to a new
dataset with much shorter time by training on a limited training
set for a small number of epochs. In this experiment, only
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(a) (b) (c) (d)

Fig. 7: The comparison between our method and CNN3[22]. (a): raw images; (b):ground truth; (c): CNN3 results; (d): our
results

methods precision recall F1 Dice’s Coefficient MDR FDR USR OSR
CNN3 [22] - - 0.827 0.762 - - - -

NB model 1(our method) 0.813 0.914 0.854 0.812 0.09 0.09 0.09 0.01
NB model 2 0.861 0.856 0.846 0.808 0.05 0.13 0.08 0.03
NB model 3 0.880 0.864 0.854 0.818 0.07 0.11 0.05 0.03
NB model 4 0.812 0.925 0.861 0.805 0.09 0.07 0.09 0.01
NB model 5 0.814 0.910 0.846 0.803 0.10 0.08 0.10 0.01
NB model * 0.845 0.892 0.850 0.81 0.06 0.11 0.02 0.08

TABLE I: Quantitative comparison results of segmentation performance on MOD dataset.

2000 patches are extracted to fine-tune the pre-trained model.
It takes about 10 seconds to train one epoch and the training
is terminated after 70 epochs. Figure 9 shows the visual
comparison between our algorithm and algorithm in [9] in
terms of segmentation results. At last, we follow the same
strategy in [21] to validate our method. The strategy is called
leave-one-patient-out cross-validation. That is every time we
train the model on 6 patient and use the rest one for validation.
Table II shows that our method outperforms the state-of-the-art
breast cancer nuclei segmentation method by a large margin
in terms of precision, recall and F1 score.

C. Discussion

1) Data augmentation for fully convolutional networks :
Data augmentation is a widely used technique to handle the
overfitting issue caused by limited training samples. In image
segmentation tasks, one can generate more images from one
image using image transformation methods. The most common
methods include rotation, flipping, shifting and rescaling.
Elastic deformation transform, a higher level transformation
method, is also employed in some image segmentation works.
Ronneberger et al. [19] claim that elastic deformation is
the key method to do data augmentation for a segmentation
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(a)

(b)

Fig. 8: Cropped portions of two images. (a) precision = 0.76
recall = 0.83, OSR = 0.05 USR = 0.15 MDR = 0.02 FDR =
0.20 (b) precision = 0.78 recall = 0.83 OSR = 0.13 USR =
0.05 MDR = 0.12 FDR = 0.10

dataset method precision recall F1 DC
BCD Veta’s method[9] 0.863 0.886 0.874 0.88

TV-MRF-BP [33] 0.801 0.823 0.811 0.84
NB model 0.942 0.915 0.923 0.862

BNC FCN[18] 0.823 0.752 0.763 -
DeconvNet[34] 0.864 0.773 0.805 -
Ensemble[21] 0.741 0.9 0.802 -

NB model 0.920 0.7835 0.84 0.83

TABLE II: Quantitative comparison of segmentation perfor-
mance on the BCD dataset

network with very limited annotated images.
However, to the best of our knowledge, there is no system-

atic study of the effectiveness of these image transformation
methods for nuclei segmentation using a fully convolutional
network. We compare different training processes using ro-
tation, flipping, shifting, rescaling and elastic deformation
transform to augment the training data. To make fair compar-
isons, we let the training set and validation set have similar
appearances by splitting each whole image into two sub-
images and placing one in the training set and another one in
the validation set. We randomly extract 6000 patches from the
training set to train our neural networks and 6000 patches from
the validation set for validation. The setting of these transfor-
mation methods is same with those reported in section II-C2.
The comparison is shown in Fig.10. ’no’ means don’t apply
data augmentation. ’combination’ means data augmentation is
performed by combining elastic deformation, flip, rotate, shift
and rescale. It is very clear that without data augmentation, the
network has severe overfitting issue, validation loss starts to
increase rapidly from epoch 5. Unexpectedly, rotating rather
than elastic deformation has achieved the best performance
in performance improvement. But only rotating operation still
cannot prevent the overfitting. One has to combine all of these
transform methods together to do data augumentation to get
good performance as done in this paper.

2) Nuclei Segmentation on Extra-large Images: To evaluate
the effectiveness of the proposed weight map and overlapped
patch extraction and assembling method for extra-large image
segmentation, we compared the segmentation results with
and without the proposed method in Fig. 11. We can see
that the raw segmentation results without using those two
techniques contain obvious seams between the patches. It also
demonstrates that the predictions in the border area is not
accurate. As shown in Fig. 11(d), if we employ the overlapped
patch extraction and assembling but without the weight map
(which means all the pixels in a patch have the same weight)
the segmentation result still shows noticeable seams. Fig.11(b)
and Fig. 11(d) has the same stride, which is 64.

3) NB model versus the mixed nucleus model + bound-
ary model: An alternative way to detect nuclei and their
boundaries is training two binary classifiers to detect inside
and the boundary separately and then merge the detections
together. We apply the same method with our NB model to
train the nucleus model and boundary model except that the
three-class classification is replaced by binary classification.
Fig. 12 depicts why the NB model outperforms the mixed
nucleus model + boundary model. The NB model is able to
learn the latent relationships between inside, boundary and
background. That is, there should be no gaps between inside
and boundary class and inside should not cross the boundary
class. From the samples shown in Fig. 12, we can easily find
out that NB model predicts the inside class and boundary
class more precisely.

IV. CONCLUSION

In this paper, we have presented a state-of-the-art supervised
fully convolutional neural network method for nuclei segmen-
tation in histopathological images. First, the histopathological
images are normalized into the same color space. To handle
the extra-large image issue, one whole image is split into
overlapping patches for succeeding processing. Next, we pro-
pose a novel nucleus-boundary model to detect nuclei and
boundaries on each patch. Then the predictions of all the
patches are seamlessly reassembled to build the raw prediction
result of the whole image. At the end, we apply a fast and
non-parameter post-processing to generate the final nuclei
segmentation results. The nucleus-boundary model is trained
on very limited number of images and has been tested on
the images that may have different appearances. Comparison
with the state-of-the-art algorithm shows that our proposed
method is accurate, robust, and fast. It is also found that our
idea of simultaneous nucleus-boundary identification model
can be applied to other image segmentation tasks such as cell
segmentation, bacteria segmentation and so on.
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(a) (b) (c)

Fig. 9: Nuclei segmentation result over the BCD dataset. (a) two breast cancer image samples. (b) automatic segmentation
result of [9]. (c) result of our method.
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(a)

(b)

Fig. 10: (a) shows how the training loss changes during
training. (b) indicates the validation loss.
.
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