Skip to main content

Advertisement

Log in

Automatic forensic identification using 3D sphenoid sinus segmentation and deep characterization

  • Original Article
  • Published:
Medical & Biological Engineering & Computing Aims and scope Submit manuscript

Abstract

Recent clinical research studies in forensic identification have highlighted the interest in sphenoid sinus anatomical characterization. Their pneumatization, well known as extremely variable in degrees and directions, could contribute to the radiologic identification, especially if dental records, fingerPrints, or DNA samples are not available. In this paper, we present a new approach for automatic person identification based on sphenoid sinus features extracted from computed tomography (CT) images of the skull. First, we present a new approach for fully automatic 3D reconstruction of the sphenoid hemisinuses which combines the fuzzy c-means method and mathematical morphology operations to detect and segment the object of interest. Second, deep shape features are extracted from both hemisinuses using a dilated residual version of a stacked convolutional auto-encoder. The obtained binary segmentation masks are thus hierarchically mapped into a compact and low-dimensional space preserving their semantic similarity. We finally employ the 2 distance to recognize the sphenoid sinus and therefore identify the person. This novel sphenoid sinus recognition method obtained 100% of identification accuracy when applied on a dataset composed of 85 CT scans stemming from 72 individuals.

Automatic Forensic Identification using 3D Sphenoid Sinus Segmentation and Deep Characterization from Dilated Residual Auto-Encoders

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Thery A, Espitalier F, Cassagnau E, Durand N, Malard O (2012) Clinical features and outcome of sphenoid sinus aspergillosis: a retrospective series of 15 cases. Eur Ann Otorhinolaryngol Head Neck Dis 129 (4):179–184

    Article  CAS  Google Scholar 

  2. Stenner M, Rudack C (2014) Diseases of the nose and paranasal sinuses in child. GMS Curr Top Otorhinolaryngol- Head Neck Surg 13(10):1–27

    Google Scholar 

  3. Auffret M, Garetier M, Diallo I, Aho S, Ben Salem D (2016) Contribution of the computed tomography of the anatomical aspects of the sphenoid sinuses to forensic identification. J Neuroradiol 43(6):404–414

    Article  Google Scholar 

  4. de Souza LA Jr, Marana AN, Weber SA (2018) Automatic frontal sinus recognition in computed tomography images for person identification. Forensic Sci Int 286(5):252–264

    Article  Google Scholar 

  5. Deloire L, Diallo I, Cadieu R, Auffret M, Alavi Z, Ognard J, Ben Salem D (2019) Post-mortem X-ray computed tomography (PMCT) identification using ante-mortem CT-scan of the sphenoid sinus. J Neuroradiol 46(4):248–255

    Article  Google Scholar 

  6. Güldnerc C, Pistorius S, Diogo I, Bien S, Sesterhenn A, Werner J (2012) Analysis of pneumatization and neurovascular structures of the sphenoid sinus using cone-beam tomography (cbt). Acta Radiol 53(2):214–9

    Article  Google Scholar 

  7. Chaiyasate S, Baron I, Clement P (2007) Analysis of paranasal sinusdevelopment and anatomical variations: a ct genetic study intwins. Clin Otolaryngol 32(2):93–100

    Article  CAS  Google Scholar 

  8. Oliveira J, Alonso M, de Sousa E Tucunduva M, Fuziy A, Scocate A, Costa A (2016) Volumetric study of sphenoid sinuses: anatomical analysis in helical computed tomography. Surg Radiol Anat 39(4):367–374

    Article  Google Scholar 

  9. Dastidar P, Heinonen T, Numminen J, Rautiainen M, Laasonen E (1999) Semi-automatic segmentation of computed tomographic images in volumetric estimation of nasal airway. Eur Arch Otorhinolaryngol 256(4):192–198

    Article  CAS  Google Scholar 

  10. Tingelhoff K, Moral AI, Kunkel ME, Rilk ME, Wagner I, Eichhorn KWG, Wahl FM, Bootz F (2007) Comparison between manual and semi-automatic. segmentation of nasal cavity and paranasal sinuses from ct images. In: 29th An. Int. Conf. IEEE EMBS

  11. Huang Z, Zhang Y, Li Q, Zhang T, Sang N (2018) Spatially adaptive denoising for X-ray cardiovascular angiogram images. Biomed Signal Proc Control 40:131–139

    Article  Google Scholar 

  12. Huang Z, Li Q, Fang H, Zhang T, Sang N (2017) Iterative weighted nuclear norm for X-ray cardiovascular angiogram image denoising. Signal Image Video Process 11:1445–1452

    Article  Google Scholar 

  13. Last C, Winkelbach S, Wahl FM, Eichhorn KWG, Bootz F (2010) A model-based approach to the segmentation of nasal cavity and paranasal sinus boundaries. In: Goesele M, Roth S, Kuijper A, Schiele B, Schindler K (eds). Springer, Berlin, pp 333–342

  14. Bui N, Ong S, Foong K (2015) Automatic segmentation of the nasal cavity and paranasal sinuses from cone-beam ct images. Int J Comput Assist Radiol Surg 10(8):1269–77

    Article  Google Scholar 

  15. Sinha A, Leonard S, Reiter A, Ishii M, Taylor RH, Hager GD (2016) Automatic segmentation and statistical shape modeling of the paranasal sinuses to estimate natural variations. In: Proc. SPIE Int. Soc. Opt. Eng.

  16. Haralick R, Shapiro L (1985) Image segmentation techniques. Comp Vision 29(1):100–132

    Google Scholar 

  17. Chan TF, Vese LA (2001) Active contours without edges. IEEE Trans Image Process 10(2):266–277

    Article  CAS  Google Scholar 

  18. Kass M, Witkin A, Terzopoulos D (1988) Snakes: active contour models. Int J Comp Vision 4(1):321–331

    Article  Google Scholar 

  19. Li C, Huang R, Ding Z, Gatenby JC, Metaxas DN, Gore C (2011) A level set method for image segmentation in the presence of intensity inomogeneneities whith application to mri. IEEE Trans Image Process 20 (7):2007–2016

    Article  Google Scholar 

  20. Belaid A, Boukerroui D (2018) Local maximum likelihood segmentation of echocardiographic images with Rayleigh distribution. Signal Image Video Process 12(6):1087–1096

    Article  Google Scholar 

  21. Zaouche R, Belaid A, Aloui S, Solaiman B, Lecornu L, Ben Salem D, Tliba S (2018) Semi-automatic method for low-grade gliomas segmentation in magnetic resonance imaging. IRBM 39(2):116–128

    Article  Google Scholar 

  22. Bezdek J (1980) A convergence theorem for the fuzzy isodata clustering algorithms. IEEE Trans Pattern Anal Mach Intell 2

  23. Xu C, Pham D, Prince J (1997) Finding the brain cortex using fuzzy segmentation, isosurfaces, and deformable surfaces. In: Proc. XVth Int Conf Inform Process Medical Imaging (IPMI 97), pp 399–404

  24. Pham DL, Prince JL (1999) Adaptive fuzzy segmentation of magnetic resonance images. IEEE Trans Med Imaging 18:737–752

    Article  CAS  Google Scholar 

  25. Ahmed M, Yamany S, Mohamed N, Farag A, Moriaty T (2002) A modified fuzzy c-means algorithm for bias field estimation and segmentation of mri data. IEEE Trans Med Imaging 21:193–199

    Article  Google Scholar 

  26. Masci J, Meier U, Ciresan D, Schmidhuber J (2011) Stacked convolutional auto-encoders for hierarchical feature extraction. In: ICANN 2011. Springer, Berlin, pp 52–59

    Google Scholar 

  27. Vincent P, Larochelle H, Bengio Y, Manzagol P-A (2008) Extracting and composing robust features with denoising autoencoders. In: Proceedings of the 25th international conference on machine learning, ser. ICML ’08. ACM, New York, pp 1096–1103

  28. He K, Zhang X, Ren S, Sun J (2016) Deep residual learning for image recognition. In: IEEE conference on computer vision and pattern recognition, CVPR, pp 770–778

  29. Ioffe S, Szegedy C (2015) Batch normalization: accelerating deep network training by reducing internal covariate shift. ICML:448–456

  30. Yu F, Koltun V, Funkhouser TA (2017) Dilated residual networks. In: IEEE conference on computer vision and pattern recognition, CVPR, pp 636–644

  31. Yu F, Koltun V (2016) Multi-scale context aggregation by dilated convolutions. In: International conference on learning representations (ICLR)

  32. Belaid A, Boukerroui D (2014) α scale spaces filters for phase based edge detection in ultrasound images. In: IEEE 11th international symposium on biomedical imaging (ISBI), pp 1247–1250

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kamal Souadih.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Souadih, K., Belaid, A., Ben Salem, D. et al. Automatic forensic identification using 3D sphenoid sinus segmentation and deep characterization. Med Biol Eng Comput 58, 291–306 (2020). https://doi.org/10.1007/s11517-019-02050-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11517-019-02050-6

Keywords

Navigation