Skip to main content

Advertisement

Log in

Removal of random-valued impulse noise from Cerenkov luminescence images

  • Original Article
  • Published:
Medical & Biological Engineering & Computing Aims and scope Submit manuscript

Abstract

Cerenkov luminescence imaging(CLI) is an emerging molecular imaging technology able to optically visualize radioactive decay signals from medical isotopes and has found wide application in tumor diagnose, cancer therapy, drug development, intraoperative guidance, and so on. When Cerenkov luminescence data are collected, the high-energy particles from the radioactive nucleus will be detected by the sensitive CCD camera and lead to impulse noise. To suppress the impulse noise and improve the contrast of the useful signal to the background, the detection-based fuzzy switching median filtering framework is proposed in this paper. Several experiments were conducted respectively to investigate the statistical feature of the noise and to evaluate the performance of the proposed noise removal framework. The results show that the signal-to-noise ratio is improved after noise elimination. The proposed filtering framework outperforms the classical median filter in terms of root mean squared error and the structural similarity index. It also preserves the maximum value and the mean value in the regions of interest better than the median filter does. In addition, compared with the FLICMCDD algorithm, the proposed method works much faster while getting similar results.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Cherenkov PA (1934) Visible emission of clean liquids by action of γ radiation. C R Dokl Akad Nauk SSSR 2:451–454

  2. Xu Y, Liu H, Cheng Z (2011) Harnessing the power of radionuclides for optical imaging: Cerenkov luminescence imaging. J Nucl Med 52(12):2009–2018

    Article  Google Scholar 

  3. Robertson R, Germanos MC (2009) Optical imaging of Cerenkov light generation from positron-emitting radiotracers. Phys Med Biol 54(16):N355–N365

    Article  CAS  Google Scholar 

  4. Cho JS, Douraghy A, Olma S, Liu K, Chen YC, Shen CK, Silverman RW, Dam RM, Chatziioannou AF (2009) Cerenkov radiation imaging as a method for quantitative measurements of beta particles in a microfluidic chip. Phys Med Biol 54(22):6757–6771.

    Article  CAS  Google Scholar 

  5. Spinelli AE, D'Ambrosio D, Calderan L, Marengo M, Sbarbati A, Boschi F (2016) Cerenkov radiation allows in vivo optical imaging of positron emitting radiotracers. Phys Med Biol 55(2):483–495

    Article  Google Scholar 

  6. Liu H, Carpenter CM, Jiang H, Pratx G, Sun C, Buchin MP, Gambhir SS, Xing L, Cheng Z (2012) Intraoperative imaging of tumors using Cerenkov luminescence endoscopy: a feasibility experimental study. J Nucl Med 53(10):1579–1584

    Article  Google Scholar 

  7. Chen X, Liang J, Cao X, Zhan Y, Cao X (2017) Harnessing the power of Cerenkov luminescence imaging for gastroenterology: Cerenkov luminescence endoscopy. Current Med Imag Rev 13(1):50–57

  8. Li C, Mitchell GS, Cherry SR (2010) Cerenkov luminescence tomography for small animal imaging. Opt Lett 35(7):1109–1111

    Article  Google Scholar 

  9. Spinelli AE, Ferdeghini M, Cavedon C, Zivelonghi E, Calandrino R, Fenzi A, Sbarbati A, Boschi F (2013) First human Cerenkography. J Biomed Opt 18(2):20502

    Article  Google Scholar 

  10. Thorek DL, Riedl CC, Grimm J (2014) Clinical Cerenkov luminescence imaging of (18)F-FDG. J Nucl Med 55(1):95–98

    Article  CAS  Google Scholar 

  11. Balkin ER, Kenoyer A, Orozco JJ, Hernandez A, Shadman M, Fisher DR, Green DJ, Hylarides MD, Press OW, Wilbur DS, Pagel JM (2014) In vivo localization of 90Y- and 177Lu-radioimmunoconjugates using Cerenkov luminescence imaging in a disseminated murine leukemia model. Cancer Res 74(20):5846–5854

    Article  CAS  Google Scholar 

  12. Boschi F, De FS, Ugel S, Spinelli AE (2018) T-cell tracking using Cerenkov and radioluminescence imaging. J Biophotonics: e20180093-1-11

  13. Xu Y, Chang E, Liu H, Jiang H, Gambhir SS, Cheng Z (2012) Proof-of-concept study of monitoring cancer drug therapy with Cerenkov luminescence imaging. J Nucl Med 53(2):312–317

    Article  CAS  Google Scholar 

  14. Grootendorst MR, Cariati M, Kothari A, Tuch DS, Purushotham A (2016) Cerenkov luminescence imaging for image-guided cancer surgery. Clin Transl Imaging 4(5):353–366

    Article  CAS  Google Scholar 

  15. Ruggiero A, Holland JP, Lewis JS, Grimm J (2010) Cerenkov luminescence imaging of medical isotopes. J Nucl Med 51(7):1123–1130

    Article  CAS  Google Scholar 

  16. Gonzalez RC, Woods RE (2008) Digital image processing, Third edn. Pearson Education, Upper Saddle River, pp 343–345

    Google Scholar 

  17. Chen Y, Zhang Y, Shu H, Yang J, Luo L, Coatrieux J, Feng Q (2016) Structure-adaptive fuzzy estimation for random-valued impulse noise suppression. IEEE Trans Circuits Syst Video Technol 28(2):414–427

    Article  Google Scholar 

  18. Singh N, Thilagavathy T, Lakshmipriya RT, Umamaheswari O (2017) Some studies on detection and filtering algorithms for the removal of random valued impulse noise. IET Image Process 11(11):953–963

    Article  Google Scholar 

  19. Pok G, Liu JC (1999) Decision-based median filter improved by predictions.in: Proc IEEE ICIP,2:410-413

  20. Eng HL, Ma KK (2001) Noise adaptive soft-switching median filter. IEEE Trans Image Process 10(2):242–251

    Article  CAS  Google Scholar 

  21. Cao X, Li Y, Zhan Y, Chen X, Kang F, Wang J, Liang J (2016) Removing noises induced by gamma radiation from Cerenkov luminescence imaging using a temporal median filter. BioMed Res Int 2016:7948432-1-9.

  22. Cao X, Sun Y, Kang F, Yi H, Zhao F, Su L, He X (2018) A novel denoising framework for Cerenkov luminescence imaging based on spatial information improved clustering and curvature-driven diffusion.J Innovative Opt Health Sci 11(4):1850017-1-8.

    Article  Google Scholar 

  23. Zhang S, Karim MA (2002) A new impulse detector for switching median filters. IEEE Signal Proc Let 9(11):360–363

    Article  Google Scholar 

  24. Wang SS, Wu CH (2009) A new impulse detection and filtering method for removal of wide range impulse noises. Pattern Recogn 42(9):2194–2202

    Article  Google Scholar 

  25. Garnett R, Huegerich T, Chui C, He W (2005) A universal noise removal algorithm with an impulse detector. IEEE Trans Image Process 14(11):1747–1754

    Article  Google Scholar 

  26. Wang Z, Bovik AC, Sheikh HR, Simoncelli EP (2004) Image quality assessment: from error visibility to structural similarity. IEEE Trans Image Process 13(4):600–612

    Article  Google Scholar 

  27. Lee SB, Ahn SB, Lee SW, Jeong SY, Ghilsuk Y, Ahn BC, Kim E, Jeong H, Lee J, Lim D, Jeon YH (2016) Radionuclide-embedded gold nanoparticles for enhanced dendritic cell-based cancer immunotherapy, sensitive and quantitative tracking of dendritic cells with PET and Cerenkov luminescence. NPG Asia Mater 8(6):e281

    Article  CAS  Google Scholar 

  28. D'Souza JW, Hensley H, Doss M, Beigarten C, Torgov M, Olafsen T, Yu JQ, Robinson MK (2017) Cerenkov luminescence imaging as a modality to evaluate antibody-based PET radiotracers. J Nucl Med 58:175–180

    Article  Google Scholar 

  29. Boschi F, De Sanctis F, Ugel S, Spinelli AE (2018) T-cell tracking using Cerenkov and radioluminescence imaging. J Biophotonics, e201800093.

Download references

Funding

This work was supported in part by the Program of the National Key Research and Development Program of China under Grant Nos. 2018YFC0910600 and 2016YFC0103802; the Fundamental Research Funds for Central Universities JB171206; the National Natural Science Foundation of China under Grant Nos. 81627807 and 81571725; and the Fok Ying-Tong Education Foundation of China under Grant No 161104.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xueli Chen.

Ethics declarations

Animal care and protocols are approved by the Fourth Military Medical University Animal Studies Committee, China.

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, D., Zhu, S., Huang, Y. et al. Removal of random-valued impulse noise from Cerenkov luminescence images. Med Biol Eng Comput 58, 131–141 (2020). https://doi.org/10.1007/s11517-019-02069-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11517-019-02069-9

Keywords

Navigation