Skip to main content
Log in

The past, present, and prospective on UV–VIS–NIR skin photonics and spectroscopy—a wavelength guide

  • Review Article
  • Published:
Medical & Biological Engineering & Computing Aims and scope Submit manuscript

Abstract

The study and applications of in vivo skin optics have been openly documented as early as the year 1954, or possibly earlier. To date, challenges in analyzing the complexities of this field remain, with wide scopes requiring more scrutiny. Recent advances in spectroscopic research and multivariate analytics allow a closer look into applications potentially for detecting or monitoring diseases. One of the challenges in this field is in establishing a reference for applications which correspond to certain bandwidths. This article reviews the scope on past research on skin spectroscopy, and the clinical aspects which have or may have applications on disease detection or enhancing diagnostics. A summary is supplied on the technicalities surrounding the measurements reported in literature, focused towards the wavelength-dependent applications in themes central to the respective research. Analytics on the topology of the papers’ data cited in this work is also provided for a statistical perspective. In short, this paper strives to immediately inform the reader with possible applications via the spectroscopic devices at hand.

.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Dawson J, Barker D, Ellis D, Cotterill J, Grassam E, Fisher G, Feather J (1980) A theoretical and experimental study of light absorption and scattering by in vivo skin. Phys Med Biol 25:695

    CAS  PubMed  Google Scholar 

  2. Young AR (1997) Chromophores in human skin. Phys Med Biol 42:789

    CAS  PubMed  Google Scholar 

  3. Jobsis FF (1977) Noninvasive, infrared monitoring of cerebral and myocardial oxygen sufficiency and circulatory parameters. Science 198:1264–1267

    CAS  PubMed  Google Scholar 

  4. Cohen A, Wadsworth N (1972) A light emitting diode skin reflectance oximeter. Med Biol Eng Comput 10:385–391

    CAS  Google Scholar 

  5. Kocsis L, Herman P, Eke A (2006) The modified Beer–Lambert law revisited. Phys Med Biol 51:N91

    CAS  PubMed  Google Scholar 

  6. Anderson RR, Parrish JA (1981) The optics of human skin. J Investig Dermatol 77:13–19

    CAS  PubMed  Google Scholar 

  7. Delpy D, Cope M (1997) Quantification in tissue near–infrared spectroscopy. Philos Trans R Soc Lond Ser B Biol Sci 352:649–659

    CAS  Google Scholar 

  8. Bashkatov A, Genina E, Kochubey V, Tuchin V (2005) Optical properties of human skin, subcutaneous and mucous tissues in the wavelength range from 400 to 2000 nm. J Phys D Appl Phys 38:2543

    CAS  Google Scholar 

  9. Bachmann L, Zezell DM, Ribeiro ADC, Gomes L, Ito AS (2006) Fluorescence spectroscopy of biological tissues—a review. Appl Spectrosc Rev 41:575–590

    CAS  Google Scholar 

  10. Bashkatov AN, Genina EA, Tuchin VV (2011) Optical properties of skin, subcutaneous, and muscle tissues: a review. J Innov Opt Health Sci 4:9–38

    Google Scholar 

  11. Liebold K, Fassler D, Schmidt WD, Kühn T, Wollina U (2000) In vivo spectroscopy in dermatology: methods and new fields of application. J Eur Acad Dermatol Venereol 14:1–4

    CAS  PubMed  Google Scholar 

  12. Van Gemert M, Jacques SL, Sterenborg H, Star W (1989) Skin optics. IEEE Trans Biomed Eng 36:1146–1154

    PubMed  Google Scholar 

  13. Cheong W-F, Prahl SA, Welch AJ (1990) A review of the optical properties of biological tissues. IEEE J Quantum Electron 26:2166–2185

    Google Scholar 

  14. Cohen ML (1977) Measurement of the thermal properties of human skin. A review. J Investig Dermatol 69:333–338

    CAS  PubMed  Google Scholar 

  15. Bigio IJ, Mourant JR (1997) Ultraviolet and visible spectroscopies for tissue diagnostics: fluorescence spectroscopy and elastic-scattering spectroscopy. Phys Med Biol 42:803

    CAS  PubMed  Google Scholar 

  16. Touitou E, Meidan VM, Horwitz E (1998) Methods for quantitative determination of drug localized in the skin. J Control Release 56:7–21

    CAS  PubMed  Google Scholar 

  17. Stamatas GN, Zmudzka BZ, Kollias N, Beer JZ (2004) Non-invasive measurements of skin pigmentation in situ. Pigment Cell Res 17:618–626

    PubMed  Google Scholar 

  18. Darvin ME, Meinke MC, Sterry W, Lademann J (2013) Optical methods for noninvasive determination of carotenoids in human and animal skin. J Biomed Opt 18:061230–061230

    Google Scholar 

  19. Villringer A, Chance B (1997) Non-invasive optical spectroscopy and imaging of human brain function. Trends Neurosci 20:435–442

    CAS  PubMed  Google Scholar 

  20. Wagnieres GA, Star WM, Wilson BC (1998) In vivo fluorescence spectroscopy and imaging for oncological applications. Photochem Photobiol 68:603–632

    CAS  PubMed  Google Scholar 

  21. Ramanujam N (2000) Fluorescence spectroscopy of neoplastic and non-neoplastic tissues. Neoplasia 2:89–117

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Khalil OS (2004) Non-invasive glucose measurement technologies: an update from 1999 to the dawn of the new millennium. Diabetes Technol Ther 6:660–697

    CAS  PubMed  Google Scholar 

  23. Heise H (2006) Infrared spectroscopy in medical diagnostics—advances in instrumentation for glycemic control and applications. Pol J Environ Stud 15:37–40

    Google Scholar 

  24. Ferrari M, Muthalib M, Quaresima V (2011) The use of near-infrared spectroscopy in understanding skeletal muscle physiology: recent developments. Phil Trans R Soc A 369:4577–4590

    CAS  PubMed  Google Scholar 

  25. Mendenhall MJ, Nunez AS, Martin RK (2015) Human skin detection in the visible and near infrared. Appl Opt 54:10559–10570

    PubMed  Google Scholar 

  26. Pattamadilok B, Devpura S, Syed ZU, Agbai ON, Vemulapalli P, Henderson M, Rehse SJ, Mahmoud BH, Lim HW, Naik R (2012) Quantitative skin color measurements in acanthosis nigricans patients: colorimetry and diffuse reflectance spectroscopy. Photodermatol Photoimmunol Photomed 28:213–215

    PubMed  Google Scholar 

  27. Zonios G, Dimou A (2009) Light scattering spectroscopy of human skin in vivo. Opt Express 17:1256–1267

    CAS  PubMed  Google Scholar 

  28. Bozkurt A, Rosen A, Rosen H, Onaral B (2005) A portable near infrared spectroscopy system for bedside monitoring of newborn brain. Biomed Eng Online 4:29

    PubMed  PubMed Central  Google Scholar 

  29. Takahashi T, Takikawa Y, Kawagoe R, Shibuya S, Iwano T, Kitazawa S (2011) Influence of skin blood flow on near-infrared spectroscopy signals measured on the forehead during a verbal fluency task. Neuroimage 57:991–1002

    PubMed  Google Scholar 

  30. Nilsson GE, Tenland T, Oberg PA (1980) A new instrument for continuous measurement of tissue blood flow by light beating spectroscopy. IEEE Trans Biomed Eng:12–19

  31. Ghazaryan AA, Hu P-S, Chen S-J, Tan H-Y, Dong C-Y (2012) Spatial and temporal analysis of skin glycation by the use of multiphoton microscopy and spectroscopy. J Dermatol Sci 65:189–195

    CAS  PubMed  Google Scholar 

  32. Golub A, Dickson EG, Kennedy J, Marcus S, Park Y, Pottier R (1999) The monitoring of ALA-induced protoporphyrin IX accumulation and clearance in patients with skin lesions by in vivo surface-detected fluorescence spectroscopy. Lasers Med Sci 14:112–122

    CAS  PubMed  Google Scholar 

  33. König K, Meyer H, Schneckenburger H, Rück A (1993) The study of endogenous porphyrins in human skin and their potential for photodynamic therapy by laser induced fluorescence spectroscopy. Lasers Med Sci 8:127–132

    Google Scholar 

  34. Yoshida K, Nishidate I (2014) Rapid calculation of diffuse reflectance from a multilayered model by combination of the white Monte Carlo and adding-doubling methods. Biomedical optics express 5:3901–3920

    PubMed  PubMed Central  Google Scholar 

  35. AF Omar and MZ MatJafri 2012 "Optical fiber near infrared spectroscopy for skin moisture measurement," in Selected Topics on Optical Fiber Technology, ed: InTech

  36. Sprigle S, Linden M, Riordan B (2002) Characterizing reactive hyperemia via tissue reflectance spectroscopy in response to an ischemic load across gender, age, skin pigmentation and diabetes. Med Eng Phys 24:651–661

    PubMed  Google Scholar 

  37. Cooksey CC, Tsai BK, Allen DW (2015) Spectral reflectance variability of skin and attributing factors. In Proc SPIE:94611 M

  38. Soller B, Srikiatkachorn A, Zou F, Rothman AL, Yoon I-K, Gibbons RV, Kalayanarooj S, Thomas SJ, Green S (2014) Preliminary evaluation of near infrared spectroscopy as a method to detect plasma leakage in children with dengue hemorrhagic fever. BMC Infect Dis 14:396

    PubMed  PubMed Central  Google Scholar 

  39. Stamatas G, Zmudzka B, Kollias N, Beer J (2008) In vivo measurement of skin erythema and pigmentation: new means of implementation of diffuse reflectance spectroscopy with a commercial instrument. Br J Dermatol 159:683–690

    CAS  PubMed  Google Scholar 

  40. Schmidt WD, Fassler D, Liebold K, Wollina U (2001) Contact-free spectroscopy of leg ulcers: principle, technique, and calculation of spectroscopic wound scores. J Investig Dermatol 116:531–535

    CAS  PubMed  Google Scholar 

  41. Atencio JD, Guillén EO, y Montiel SV, Rodríguez MC, Ramos JC, Gutiérrez J, Martínez F (2009) Influence of probe pressure on human skin diffuse reflectance spectroscopy measurements. Opt Mem Neural Netw 18:6–14

    Google Scholar 

  42. Chen W, Liu R, Xu K, Wang RK (2005) Influence of contact state on NIR diffuse reflectance spectroscopy in vivo. J Phys D Appl Phys 38:2691

    CAS  Google Scholar 

  43. Karamfilov T, Weichold S, Karte K, Vilser W, Wollina U (1999) Remittance spectroscopy mapping of human skin in vivo. Skin Res Technol 5:49–52

    Google Scholar 

  44. Arimoto H, Egawa M, Yamada Y (2005) Depth profile of diffuse reflectance near-infrared spectroscopy for measurement of water content in skin. Skin Res Technol 11:27–35

    PubMed  Google Scholar 

  45. Seo I, Tseng S, Cula G, Bargo P, Kollias N (2009) Fluorescence spectroscopy for endogenous porphyrins in human facial skin. Proc SPIE:716103

  46. Drenckhahn C, Koch SP, Dümmler J, Kohl-Bareis M, Steinbrink J, Dreier JP (2015) A validation study of the use of near-infrared spectroscopy imaging in primary and secondary motor areas of the human brain. Epilepsy Behav 49:118–125

    PubMed  Google Scholar 

  47. Hirasawa A, Kaneko T, Tanaka N, Funane T, Kiguchi M, Sørensen H, Secher NH, Ogoh S (2016) Near-infrared spectroscopy determined cerebral oxygenation with eliminated skin blood flow in young males. J Clin Monit Comput 30:243–250

    PubMed  Google Scholar 

  48. Olesen ND, Sørensen H, Ambrus R, Svendsen LB, Lund A, Secher NH (2017) A mesenteric traction syndrome affects near-infrared spectroscopy evaluated cerebral oxygenation because skin blood flow increases. J Clin Monit Comput:1–8

  49. Stranc M, Sowa M, Abdulrauf B, Mantsch H (1998) Assessment of tissue viability using near-infrared spectroscopy. Br J Plast Surg 51:210–217

    CAS  PubMed  Google Scholar 

  50. De Rigal J, Losch M, Bazin R, Camus C, Sturelle C, Descamps V, Leveque J (1993) Near infrared spectroscopy: a new approach to the characterization of dry skin. J Soc Cosmet Chem 44:197–197

    Google Scholar 

  51. Hannemann R, DeWitt D, Wiechel J (1978) Neonatal serum bilirubin from skin reflectance. Pediatr Res 12:207–210

    CAS  PubMed  Google Scholar 

  52. Masters BR, So PT, Gratton E (1998) Multiphoton excitation microscopy of in vivo human skin: functional and morphological optical biopsy based on three-dimensional imaging, lifetime measurements and fluorescence spectroscopy. Ann N Y Acad Sci 838:58–67

    CAS  PubMed  Google Scholar 

  53. Weigmann H-J, Lademann J, Meffert H, Schaefer H, Sterry W (1999) Determination of the horny layer profile by tape stripping in combination with optical spectroscopy in the visible range as a prerequisite to quantify percutaneous absorption. Skin Pharmacol Physiol 12:34–45

    CAS  Google Scholar 

  54. Kollias N, Zonios G, Stamatas GN (2002) Fluorescence spectroscopy of skin. Vib Spectrosc 28:17–23

    CAS  Google Scholar 

  55. Bliznakova I, Borisova E, Avramov L (2007) Laser-and light-induced autofluorescence spectroscopy of human skin in dependence on excitation wavelengths. ACTA PHYSICA POLONICA SERIES A 112:1131

    CAS  Google Scholar 

  56. Bodén I, Nilsson D, Naredi P, Lindholm-Sethson B (2008) Characterization of healthy skin using near infrared spectroscopy and skin impedance. Med Biol Eng Comput 46:985

    PubMed  Google Scholar 

  57. Cooksey CC, Allen DW (2013) Reflectance measurements of human skin from the ultraviolet to the shortwave infrared (250 nm to 2500 nm). in Proc SPIE:87340 N

  58. Cooksey CC, Tsai BK, Allen DW (2014) A collection and statistical analysis of skin reflectance signatures for inherent variability over the 250 nm to 2500 nm spectral range. in Proc SPIE:908206

  59. Kollias N, Baqer A (1985) Spectroscopic characteristics of human melanin in vivo. J Investig Dermatol 85:38–42

    CAS  PubMed  Google Scholar 

  60. Kozikowski S, Wolfram L, Alfano R (1984) Fluorescence spectroscopy of eumelanins. IEEE J Quantum Electron 20:1379–1382

    Google Scholar 

  61. Zonios G, Bykowski J, Kollias N (2001) Skin melanin, hemoglobin, and light scattering properties can be quantitatively assessed in vivo using diffuse reflectance spectroscopy. J Investig Dermatol 117:1452–1457

    CAS  PubMed  Google Scholar 

  62. Matas A, Sowa MG, Taylor G, Mantsch HH (2002) Melanin as a confounding factor in near infrared spectroscopy of skin. Vib Spectrosc 28:45–52

    CAS  Google Scholar 

  63. Shriver MD, Parra EJ (2000) Comparison of narrow-band reflectance spectroscopy and tristimulus colorimetry for measurements of skin and hair color in persons of different biological ancestry. Am J Phys Anthropol 112:17

    CAS  PubMed  Google Scholar 

  64. Pena A-M, Strupler M, Boulesteix T, Schanne-Klein M-C (2005) Spectroscopic analysis of keratin endogenous signal for skin multiphoton microscopy. Opt Express 13:6268–6274

    CAS  PubMed  Google Scholar 

  65. Matts P, Dykes P, Marks R (2007) The distribution of melanin in skin determined in vivo. Br J Dermatol 156:620–628

    CAS  PubMed  Google Scholar 

  66. Dwyer PJ, DiMarzio CA (1999) Hyperspectral imaging for dermal hemoglobin spectroscopy. in Proc SPIE:72–82

  67. Meglinski IV, Matcher SJ (2002) Quantitative assessment of skin layers absorption and skin reflectance spectra simulation in the visible and near-infrared spectral regions. Physiol Meas 23:741

    PubMed  Google Scholar 

  68. Bjerring P, Andersen P, Arendt-Nielsen L (1989) Vascular response of human skin after analgesia with EMLA cream. Br J Anaesth 63:655–660

    CAS  PubMed  Google Scholar 

  69. Rhodes L, Diffey B (1997) Fluorescence spectroscopy: a rapid, noninvasive method for measurement of skin surface thickness of topical agents. Br J Dermatol 136:12–17

    CAS  PubMed  Google Scholar 

  70. Corti P, Ceramelli G, Dreassi E, Njine M (1998) Near infrared reflectance spectroscopy in the study of atopy Part 3.† Interactions between the skin and fomblins. Analyst 123:2313–2317

    CAS  PubMed  Google Scholar 

  71. Stokes R, Diffey B (1999) The feasibility of using fluorescence spectroscopy as a rapid, non-invasive method for evaluating sunscreen performance. J Photochem Photobiol B Biol 50:137–143

    CAS  Google Scholar 

  72. Häggblad E, Larsson M, Arildsson M, Strömberg T, Salerud EG (2001) Reflection spectroscopy of analgesized skin. Microvasc Res 62:392–400

    PubMed  Google Scholar 

  73. Soukos NS, Crowley K, Bamberg MP, Gillies R, Doukas AG, Evans R, Kollias N (2000) A rapid method to detect dried saliva stains swabbed from human skin using fluorescence spectroscopy. Forensic Sci Int 114:133–138

    CAS  PubMed  Google Scholar 

  74. Kim K-H, Jheon S, Kim J-K (2007) In vivo skin absorption dynamics of topically applied pharmaceuticals monitored by fiber-optic diffuse reflectance spectroscopy. Spectrochim Acta A Mol Biomol Spectrosc 66:768–772

    PubMed  Google Scholar 

  75. Zonios G, Dimou A, Galaris D (2007) Probing skin interaction with hydrogen peroxide using diffuse reflectance spectroscopy. Phys Med Biol 53:269

    PubMed  Google Scholar 

  76. Egawa M (2009) In vivo simultaneous measurement of urea and water in the human stratum corneum by diffuse-reflectance near-infrared spectroscopy. Skin Res Technol 15:195–199

    PubMed  Google Scholar 

  77. Kollias N, Baqer A, Sadiq I (1994) Minimum erythema dose determination in individuals of skin type V and VI with diffuse reflectance spectroscopy. Photodermatol Photoimmunol Photomed 10:249–249

    CAS  PubMed  Google Scholar 

  78. Walling PL, Dabney JM (1989) Moisture in skin by near-infrared reflectance spectroscopy. J Soc Cosmet Chem 40:151–171

    CAS  Google Scholar 

  79. Martin KA (1993) Direct measurement of moisture in skin by NIR spectroscopy. J Soc Cosmet Chem 44:249–249

    Google Scholar 

  80. Attas M, Posthumus T, Schattka B, Sowa M, Mantsch H, Zhang S (2002) Long-wavelength near-infrared spectroscopic imaging for in-vivo skin hydration measurements. Vib Spectrosc 28:37–43

    CAS  Google Scholar 

  81. Schneckenburger H, Koenig K, Dienersberger T, Hahn R (1994) Time-gated microscopic imaging and spectroscopy in medical diagnosis and photobiology [also Erratum 33 (11) 3828 (Nov1994)]. Opt Eng 33:2600–2606

    Google Scholar 

  82. Orenstein A, Kostenich G, Rothmann C, Barshack I, Malik Z (1998) Imaging of human skin lesions using multipixel Fourier transform spectroscopy Fourier transform spectral imaging. Lasers Med Sci 13:112–118

    Google Scholar 

  83. Wennberg A-M, Gudmundson F, Stenquist B, Ternesten A, Mölne L, Rosén A, Larkö O (1999) In vivo detection of basal cell carcinoma using imaging spectroscopy. Acta Derm Venereol 79

  84. Angelopoulou E (1999) The reflectance spectrum of human skin. Technical Reports (CIS):584

  85. McIntosh LM, Jackson M, Mantsch HH, Mansfield JR, Crowson AN, Toole JW (2002) Near-infrared spectroscopy for dermatological applications. Vib Spectrosc 28:53–58

    CAS  Google Scholar 

  86. Broer NM, Liesenhoff T, Horch H-H (2004) Laser induced fluorescence spectroscopy for real-time tissue differentiation. Med Laser Appl 19:45–53

    Google Scholar 

  87. Hopkins GW, Mauze GR (1999) In-vivo NIR diffuse-reflectance tissue spectroscopy of human subjects. Hewlett Packard Laboratories, California

    Google Scholar 

  88. Malin SF, Ruchti TL, Blank TB, Thennadil SN, Monfre SL (1999) Noninvasive prediction of glucose by near-infrared diffuse reflectance spectroscopy. Clin Chem 45:1651–1658

    CAS  PubMed  Google Scholar 

  89. Nyström J, Lindholm-Sethson B, Stenberg L, Ollmar S, Eriksson JW, Geladi P (2003) Combined near-infrared spectroscopy and multifrequency bio-impedance investigation of skin alterations in diabetes patients based on multivariate analyses. Med Biol Eng Comput 41:324–329

    PubMed  Google Scholar 

  90. Kasemsumran S, Du YP, Maruo K, Ozaki Y (2006) Improvement of partial least squares models for in vitro and in vivo glucose quantifications by using near-infrared spectroscopy and searching combination moving window partial least squares. Chemom Intell Lab Syst 82:97–103

    CAS  Google Scholar 

  91. Brancaleon L, Durkin AJ, Tu JH, Menaker G, Fallon JD, Kollias N (2001) In vivo fluorescence spectroscopy of nonmelanoma skin cancer¶. Photochem Photobiol 73:178–183

    CAS  PubMed  Google Scholar 

  92. Borisova E, Troyanova P, Pavlova P, Avramov L (2008) Diagnostics of pigmented skin tumors based on laser-induced autofluorescence and diffuse reflectance spectroscopy. Quantum Electronics 38:597

    CAS  Google Scholar 

  93. Yuan Y, Relue P (2008) Enzymatic degradation of human skin dermis revealed by fluorescence and reflectance spectroscopy. Opt Express 16:9857–9868

    CAS  PubMed  Google Scholar 

  94. Drakaki E, Kaselouris E, Makropoulou M, Serafetinides A, Tsenga A, Stratigos A, Katsambas A, Antoniou C (2009) Laser-induced fluorescence and reflectance spectroscopy for the discrimination of basal cell carcinoma from the surrounding normal skin tissue. Skin Pharmacol Physiol 22:158–165

    CAS  PubMed  Google Scholar 

  95. Canpolat M, Akman-Karakaş A, Gökhan-Ocak GA, Başsorgun İC, Akif Çiftçioğlu M, Alpsoy E (2012) Diagnosis and demarcation of skin malignancy using elastic light single-scattering spectroscopy: a pilot study. Dermatol Surg 38:215–223

    CAS  PubMed  Google Scholar 

  96. Upile T, Jerjes W, Radhi H, Mahil J, Rao A, Hopper C (2012) Elastic scattering spectroscopy in assessing skin lesions: an “in vivo” study. Photodiagn Photodyn Ther 9:132–141

    Google Scholar 

  97. Bodén I, Nyström J, Lundskog B, Zazo V, Geladi P, Lindholm-Sethson B, Naredi P (2013) Non-invasive identification of melanoma with near-infrared and skin impedance spectroscopy. Skin Res Technol 19

  98. Sharma M, Marple E, Reichenberg J, Tunnell JW (2014) Design and characterization of a novel multimodal fiber-optic probe and spectroscopy system for skin cancer applications. Rev Sci Instrum 85:083101

    PubMed  PubMed Central  Google Scholar 

  99. Mendelson Y, Ochs BD (1988) Noninvasive pulse oximetry utilizing skin reflectance photoplethysmography. IEEE Trans Biomed Eng 35:798–805

    CAS  PubMed  Google Scholar 

  100. Nitzan M, Babchenko A, Milston A, Turivnenko S, Khanokh B, Mahler Y (1996) Measurement of the variability of the skin blood volume using dynamic spectroscopy. Appl Surf Sci 106:478–482

    CAS  Google Scholar 

  101. Boushel R, Piantadosi C (2000) Near-infrared spectroscopy for monitoring muscle oxygenation. Acta Physiol 168:615–622

    CAS  Google Scholar 

  102. Wollina U, Liebold K, Schmidt WD, Hartmann M, Fassler D (2002) Biosurgery supports granulation and debridement in chronic wounds—clinical data and remittance spectroscopy measurement. Int J Dermatol 41:635–639

    PubMed  Google Scholar 

  103. Crookes BA, Cohn SM, Bloch S, Amortegui J, Manning R, Li P, Proctor MS, Hallal A, Blackbourne LH, Benjamin R (2005) Can near-infrared spectroscopy identify the severity of shock in trauma patients? J Trauma Acute Care Surg 58:806–816

    Google Scholar 

  104. Wassenaar E, Van den Brand J (2005) Reliability of near-infrared spectroscopy in people with dark skin pigmentation. J Clin Monit Comput 19:195–199

    CAS  PubMed  Google Scholar 

  105. Buono MJ, Miller PW, Hom C, Pozos RS, Kolkhorst FW (2005) Skin blood flow affects in vivo near-infrared spectroscopy measurements in human skeletal muscle. Jpn J Physiol 55:241–244

    PubMed  Google Scholar 

  106. Davis SL, Fadel PJ, Cui J, Thomas GD, Crandall CG (2006) Skin blood flow influences near-infrared spectroscopy-derived measurements of tissue oxygenation during heat stress. J Appl Physiol 100:221–224

    PubMed  Google Scholar 

  107. Yang Y, Soyemi OO, Scott PJ, Landry MR, Lee SM, Stroud L, Soller BR (2007) Quantitative measurement of muscle oxygen saturation without influence from skin and fat using continuous-wave near infrared spectroscopy. Opt Express 15:13715–13730

    CAS  PubMed  Google Scholar 

  108. Tew GA, Ruddock AD, Saxton JM (2010) Skin blood flow differentially affects near-infrared spectroscopy-derived measures of muscle oxygen saturation and blood volume at rest and during dynamic leg exercise. Eur J Appl Physiol 110:1083–1089

    PubMed  Google Scholar 

  109. Hiraoka M, Firbank M, Essenpreis M, Cope M, Arridge S, Van Der Zee P, Delpy D (1993) A Monte Carlo investigation of optical pathlength in inhomogeneous tissue and its application to near-infrared spectroscopy. Phys Med Biol 38:1859

    CAS  PubMed  Google Scholar 

  110. Steinhoff BJ, Herrendorf G, Kurth C (1996) Ictal near infrared spectroscopy in temporal lobe epilepsy: a pilot study. Seizure 5:97–101

    CAS  PubMed  Google Scholar 

  111. Tachtsidis I, Elwell CE, Leung TS, Lee C-W, Smith M, Delpy DT (2004) Investigation of cerebral haemodynamics by near-infrared spectroscopy in young healthy volunteers reveals posture-dependent spontaneous oscillations. Physiol Meas 25:437

    PubMed  Google Scholar 

  112. Aletti F, Re R, Pace V, Contini D, Molteni E, Cerutti S, Bianchi AM, Torricelli A, Spinelli L, Cubeddu R (2012) Deep and surface hemodynamic signal from functional time resolved transcranial near infrared spectroscopy compared to skin flowmotion. Comput Biol Med 42:282–289

    PubMed  Google Scholar 

  113. Sørensen H, Secher NH, Siebenmann C, Nielsen HB, Kohl-Bareis M, Lundby C, Rasmussen P (2012) Cutaneous vasoconstriction affects near-infrared spectroscopy determined cerebral oxygen saturation during administration of norepinephrine. Anesthesiology: The Journal of the American Society of Anesthesiologists 117:263–270

    Google Scholar 

  114. Ogoh S, Sato K, Okazaki K, Miyamoto T, Secher F, Sørensen H, Rasmussen P, Secher NH (2014) A decrease in spatially resolved near-infrared spectroscopy-determined frontal lobe tissue oxygenation by phenylephrine reflects reduced skin blood flow. Anesth Analg 118:823–829

    CAS  PubMed  Google Scholar 

  115. Hirasawa A, Yanagisawa S, Tanaka N, Funane T, Kiguchi M, Sørensen H, Secher NH, Ogoh S (2015) Influence of skin blood flow and source-detector distance on near-infrared spectroscopy-determined cerebral oxygenation in humans. Clin Physiol Funct Imaging 35:237–244

    CAS  PubMed  Google Scholar 

  116. Holper L, Scholkmann F, Wolf M (2014) The relationship between sympathetic nervous activity and cerebral hemodynamics and oxygenation: a study using skin conductance measurement and functional near-infrared spectroscopy. Behav Brain Res 270:95–107

    PubMed  Google Scholar 

  117. Van Veen R, Sterenborg HJ (2001) Correction for inhomogeneously distributed absorbers in spatially resolved diffuse reflectance spectroscopy. Photon Migration, Optical Coherence Tomography, and Microscopy:192–195

  118. Bykowski J, Kollias N, LaMuraglia G (2004) Evaluation of peripheral arterial occlusive disease and postsurgical viability using reflectance spectroscopy of skin. Microvasc Res 67:152–158

    CAS  PubMed  Google Scholar 

  119. Randeberg LL, Haugen OA, Haaverstad R, Svaasand LO (2006) A novel approach to age determination of traumatic injuries by reflectance spectroscopy. Lasers Surg Med 38:277–289

    PubMed  Google Scholar 

  120. Repež A, Oroszy D, Arnež ZM (2008) Continuous postoperative monitoring of cutaneous free flaps using near infrared spectroscopy. J Plast Reconstr Aesthet Surg 61:71–77

    PubMed  Google Scholar 

  121. Strehle E-M (2010) Making the invisible visible: near-infrared spectroscopy and phlebotomy in children. Telemedicine and e-Health 16:889–893

    PubMed  Google Scholar 

  122. Lyngsnes Randeberg L, Bruzell Roll E, Norvang Nilsen L, Christensen T, Svaasand L (2005) In vivo spectroscopy of jaundiced newborn skin reveals more than a bilirubin index. Acta Paediatr 94:65–71

    PubMed  Google Scholar 

  123. Olsson E, Ahlsén G, Eriksson M (2016) Skin-to-skin contact reduces near-infrared spectroscopy pain responses in premature infants during blood sampling. Acta Paediatr 105:376–380

    PubMed  Google Scholar 

  124. Smesny S, Berger G, Rosburg T, Riemann S, Riehemann S, McGorry P, Sauer H (2003) Potential use of the topical niacin skin test in early psychosis—a combined approach using optical reflection spectroscopy and a descriptive rating scale. J Psychiatr Res 37:237–247

    PubMed  Google Scholar 

  125. Tanida M, Katsuyama M, Sakatani K (2007) Relation between mental stress-induced prefrontal cortex activity and skin conditions: a near-infrared spectroscopy study. Brain Res 1184:210–216

    CAS  PubMed  Google Scholar 

  126. Simpson CR, Kohl M, Essenpreis M, Cope M (1998) Near-infrared optical properties of ex vivo human skin and subcutaneous tissues measured using the Monte Carlo inversion technique. Phys Med Biol 43:2465

    CAS  PubMed  Google Scholar 

  127. Meglinski I, Matcher S (2003) Computer simulation of the skin reflectance spectra. Comput Methods Prog Biomed 70:179–186

    CAS  Google Scholar 

  128. Iino K, Maruo K, Arimoto H, Hyodo K, Nakatani T, Yamada Y (2003) Monte Carlo simulation of near infrared reflectance spectroscopy in the wavelength range from 1000 nm to 1900 nm. Opt Rev 10:600–606

    Google Scholar 

  129. Verkruysse W, Zhang R, Choi B, Lucassen G, Svaasand LO, Nelson JS (2004) A library based fitting method for visual reflectance spectroscopy of human skin. Phys Med Biol 50:57

    Google Scholar 

  130. Zhong X, Wen X, Zhu D (2014) Lookup-table-based inverse model for human skin reflectance spectroscopy: two-layered Monte Carlo simulations and experiments. Opt Express 22:1852–1864

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. R. M. Adikan.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Online Resource 1

Wavelength Guide. This file is an Excel spreadsheet which is used to construct the overview figures for the range of wavelengths between 200 and 2500 nm, which can be re-used for other range-based studies. The formula parses the string input in the second row designated “Bandwidth.” The user may key in the values of the bandwidth in (Wavelength value 1)–(Wavelength value 2) format and copy the neighboring cells to produce a new data column. The column can further be graphed versus the static wavelength column on the extreme left. Also, this resource contains the analytics of the cited publications in the second worksheet. (XLSX 3403 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Poh, A.H., Adikan, F.R.M. & Moghavvemi, M. The past, present, and prospective on UV–VIS–NIR skin photonics and spectroscopy—a wavelength guide. Med Biol Eng Comput 58, 1159–1175 (2020). https://doi.org/10.1007/s11517-019-02077-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11517-019-02077-9

Keywords

Navigation