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Abstract

A front-end for biopotential sensing in wearable medical devices has been recently proposed which is claimed to provide 100 GS2
input impedance by manually matching two resistor pairs in a positive- and a negative-feedback loop around an operational
amplifier (op amp); the cost being that the equivalent input noise voltage doubles with respect to a simple non-inverting amplifier.
The ECG acquired with capacitive (sic) electrodes through a cotton shirt is presented as a proof of the performance of the
proposed circuit. It turns out, however, that the analysis ignores op amp’s input capacitance hence the effort to achieve a very high
input resistance seems futile. Further, cotton is highly hygroscopic hence not an appropriate dielectric, so that there is no proof
that the electrodes tested were actually capacitive. This comment addresses these two problems and some additional conceptual

and methodological inaccuracies found in the paper.
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1 Impedance model for capacitive electrodes

At any given frequency, electrode impedance, the same as the
impedance of any other material, can be modeled by a resis-
tance Ry in series with a capacitance C or a resistance R,
shunted by a capacitance C,,. For electrodes wherein DC can
flow through, the parallel model seems more appropriate be-
cause, in the series model, capacitance C, blocks DC. The
relationship between the parameters of the two models is

Ry = Rp 2 = Rp 2 (1)
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where wy, = 1/7, = (RpCp)fl. These equations show that, even if
R, and C,, are constant within a broad frequency range, the value
of R, and C; will change at each signal frequency being consid-
ered inside that range. At (angular) frequencies smaller than wy,,
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R, and Ry and C,, and C will be very close. Therefore, a small R
at a given frequency requires a very small w;, as compared with
that frequency, hence a very large 7,; a large Ry, is not enough to
guarantee a small R;. Consequently, the statement in [1] “If the
equivalent model between the body and the electrode is simpli-
fied as a coupling capacitor, the equivalent input impedance of
the post front-end should be at least 100 G2 to detect 0.1 Hz
low frequency signal for the coupling capacitance as low as
several pF” needs some discussion relative to the electrode
model and to the ECG signal frequency.

With regard to electrode impedance, R, would become re-
dundant if its impedance were much larger than that of C, at the
signal frequency w, i.e., R, >> 1/wC,, hence wy, <<w. With re-
gard to ECG signal frequency, its fundamental component is
usually higher than 0.5 Hz (30 beats per minute). The 0.05 Hz
comer frequency in some ECG diagnostic standards is intended
to prevent waveform distortion. Therefore, electrode impedance
at 0.5 Hz will be capacitive whenever 7,=R,C,>>1 s/m=
318 ms, which is quite large for biopotential electrodes. For
example, a cotton-based “non-contact electrode” described in
[2] had 305 M2 shunted by 34 pF, hence 7;,=10.4 ms (w,=
96 rad/s), which means that its reactance at 0.5 Hz (3.14 rad/s) is
more than 30 times larger than its resistance, and at 10—15 Hz,
wherein most of ECG power is, electrode reactance and resis-
tance will be close. Then, from Eq. (1), it follows Ry=R,/2;
hence, it cannot be neglected at all.
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Moreover, even if the reactance predominated, the elec-
trode would not be “capacitive” if amplifier input bias current
could flow through R;, [3]. Consequently, if input bias currents
are very low, the insulation of capacitive electrodes must be
extremely good. The LMP770x used in [1], with [, ==
200 fA, needs insulation better than 1 TS, which is not easy
to achieve in printed circuits (hence the use of “air wiring”),
less with common fabrics between the electrode plate and the
skin. The electrodes described in [1] were circular metal plates
4 c¢m in diameter on a cotton T-shirt. If the metal-skin gap is
assumed to be about 0.25 mm, and the relative permittivity for
cotton is between 1.3 and 1.4, then the electrode capacitance is
about 58 to 72 pF. Table 1 in [1] assumes Ceq =470 pF, and
later calculations use 46 pF. No insulation resistance was spec-
ified but achieving 1 T2 with cotton is unrealistic.

2 Voltage-loading effect

The target 100 G2 input impedance for the proposed font-end
is meant to avoid undesired voltage attenuation. For an elec-
trode with equivalent impedance Z, connected to a front-end
with equivalent input impedance Z;,, the voltage attenuation
will be

Zin

A=1—""
Zin + Zeq

(3)

For the proposed front-end, Z;, comprises the equivalent
resistance R, (termed “impedance” in [1]) between the op
amp’s non-inverting terminal and ground, shunted by the ca-
pacitance C. between that terminal and ground (common-
mode input capacitance), which is unaffected by feedback
networks around the op amp. For FET-input op amps, C; plus
the layout capacitance can expected to be at least 1 to 5 pF, and
for the CMOS-based LMP770x, C, can easily reach about
30 pF. A PCB ground plane like that used in [1] will add a
few more picofarads. Since most ECG power is between 10
and 15 Hz, at this frequency, C, will predominate over R., and
for an electrode (capacitive or not) with equivalent capaci-
tance Ceq and a very high R, we would have A = Co(/(Ceq +
C.). For a 34-pF electrode, A ~0.5. Coincidentally, in [1], the
ECG in Fig. 14, obtained with cotton electrodes, is below 50%
of that in Fig. 13, obtained with dry electrodes, which capac-
itance can be much larger. Therefore, since the input resistance
of FET or CMOS op amps can be higher than 10 T2, there is
no need to try to improve it in order to avoid undesired signal
attenuation. In fact, any external network will probably de-
grade the very high input resistance of the device. What limits
the input impedance of analog front ends for biopotentials is
the equivalent input capacitance of the amplifier (off-the-shelf
or specific IC), circuit layout, and electric shields if used.
Table 1 in [1] provides only input resistance measurements,

@ Springer

not actual input impedance measurements that could have
revealed the presence of the input capacitance.

3 Amplitude frequency response

Since, on the one hand, the electrode is assumed to be purely
capacitive (C,q) and, on the other hand, the input impedance
of the front-end is assumed to be purely resistive (R.y), the
frequency response is high pass and, from Table 1 in [1], the
time constant will be 7=111 GQ2 x 470 pF =52.2 s. This
means that the settling time after any transient change will
be of the order of several minutes, which is inconvenient in
wearable devices. Fig. 2 in [1] shows quite correctly that the
(=3 dB) corner frequency is 0.003 Hz (7= 53 s), which im-
plies that low-frequency noise (electronic and undesired phys-
iological signals) will add to the desired ECG. The depen-
dence of this corner frequency on electrode impedance, which
depends itself on the body site where electrodes are placed,
means that each electrode signal may see a different corner
frequency. This is a demerit for any differential measurement.

4 Noise model and analysis method

In ECG recordings with common conductive electrodes, noise
other than motion artifacts has been demonstrated to be larger
than the thermal noise of the electrode impedance [4].
Electrode noise mainly originates in the electrolyte-skin inter-
face and its rms value ranges from 1 to 20 uV depending on
the electrode gel and the skin properties of the subject [5]. For
wearable devices, EMG noise and motion artifacts will prob-
ably predominate because in ambulatory monitoring it has
been demonstrated that “the electrode-tissue impedance can
correlate with the motion artifacts for local disturbance of the
electrodes” [6]. Therefore, front-ends need only a basic noise
analysis in order to check that their noise is commensurate
with the expected EMG and motion artifact noise.

The focus in [1], however, is on the relationship between
the equivalent input resistance of the proposed front-end cir-
cuit and the equivalent input noise. This does not need any
effort as it was demonstrated, long ago, that a larger input
resistance in voltage measurements does not increase the total
output noise in spite of the increased spectral density of the
thermal noise of the resistor [7]. For active electrodes in par-
ticular, it has been demonstrated that “driving the input im-
pedance to infinity minimizes the noise figure for the sensor,
irrespective of the source impedance” [8]. Input current noise
contributions can be kept small in any case by selecting an
appropriate amplifier.

Nevertheless, the noise model and analysis method used in
[1] deserve some additional cautionary words. First, the fol-
lowing sentence in the “Introduction” “the input referred noise
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in 0.7—100 Hz frequency band is 3.8 Vg with the gain of
46 dB” (sic) is somewhat misleading as it associates input
referred noise to amplifier gain. Input referred voltage noise
is the output voltage noise divided by the voltage gain; hence,
it is independent of the gain. Second, output noise power
spectral density must be calculated by multiplying the input
noise power spectral density by the square of the modulus of
the transmittance but Egs. (23) and (32) in [1] show input and
output voltage noise related by the transfer function as if these
were deterministic signals. Third, it is not clear how or what
determines the noise bandwidth in noise calculations in [1]. It
seems that the noise bandwidth considered is 1-100 Hz for all
noise sources, when in fact, the actual noise bandwidth is not
the same for all resistors. Finally, there is no clear explanation
about how were electrodes placed during noise measurements:
where they in contact with a dry T-shirt? These facts cast
serious doubts about the validity of the noise analysis and
noise measurements performed.

5 Conclusions

Capacitive biopotential electrodes are expected to form a ca-
pacitive voltage divider with the input capacitance of the cir-
cuit they are connected to. This is because above, say, 0.5 Hz,
the input reactance of high-input-resistance amplifiers is
smaller than their input resistance as 1 pF has “only”
340 GS2 whereas input resistance can exceed 10 T(2. But if
the input bias/leakage current of the front-end circuit actually
flows through the electrode, this means that the insulation
resistance is not high enough and the equivalent impedance
for the electrode is that insulation resistance shunted by some
capacitance; hence, the electrode can no longer be considered
capacitive. This is often the case of through-clothing ECG
measurements as sweat (an electrolyte) bridges the gap be-
tween the electrode plate and the skin so that the resistance
between them will seldom reach 1 G2.

Further, the input impedance of the front-end proposed in
[1] is limited by the common-mode input capacitance of the
op amp, the same as any other of the several front-ends cited in
[1], and no external feedback can reduce that capacitance.
Consequently, the electrode model in Fig. 1 of [1], which
includes only a capacitance and the omission of the op amp’s
common-mode input capacitance in the same figure are un-
justified oversimplifications.

A widely used solution for through-clothing ECG measure-
ments is a simple voltage buffer, with a commensurate resistor
connected to signal ground to provide a path for input bias

currents. This could be the reference design to assess the per-
formance of alternative front-end circuits such as the one pro-
posed in [1].
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