Skip to main content
Log in

Numerical simulation of nasal airflows and thermal air modification in newborns

  • Original Article
  • Published:
Medical & Biological Engineering & Computing Aims and scope Submit manuscript

Abstract

Warming, filtering, and humidification of inspired air are major functions of the upper airway, which can be negatively altered by local disorders or surgical interventions. These functions have not been described in neonates because of ethical and technical problems difficult to solve. Numerical simulations can get around these limitations. The objective of this study was to analyze physiological nasal airflow and thermal distribution using computational fluid dynamics (CFD) techniques in neonates. CT imaging of neonates was collected from the Pediatric Radiology Department of our center. CFD has been used to simulate nasal airflow numerically, with ambient air set at 19 °C, following the recommendations for a neonate’s bedroom. Thermal distribution within the nasal cavity was analyzed and coupled with airflow patterns over complete respiratory cycles. Sixteen patients have been included in the study. During inspiration, important air warming is noticed in the first centimeter of the nasal cavity (+ 8 °C at the anterior end of the inferior turbinate). During the expiration phase, the temperature decreases slightly (− 3 °C) between the pharynx and the nostrils. A model with asymmetric nasal fossae showed that nasal obstruction leads to decreased airflow and abnormally high temperatures in the obstructed side (+ 2 °C at the nasal valve, + 4 °C at the choana). According to our results, the nasal valve area is of crucial importance in air warming in neonates, when ambient air is 19 °C, since about 70% of air warming is performed in this area. When needed, surgical interventions should respect the anatomy of this zone and restore normal airflows and warming.

.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Keck T, Leiacker R, Heinrich A, Kuhnemann S, Rettinger G (2000) Humidity and temperature profile in the nasal cavity. Rhinology 38(4):167–171

    CAS  PubMed  Google Scholar 

  2. Keck T, Leiacker R, Riechelmann H, Rettinger G (2000) Temperature profile in the nasal cavity. Laryngoscope 110(4):651–654. https://doi.org/10.1097/00005537-200004000-00021

    Article  CAS  PubMed  Google Scholar 

  3. Sommer F, Kroger R, Lindemann J (2012) Numerical simulation of humidification and heating during inspiration within an adult nose. Rhinology 50(2):157–164. https://doi.org/10.4193/Rhino11.231

    Article  CAS  PubMed  Google Scholar 

  4. Hanida S, Mori F, Kumahata K, Watanabe M, Ishikawa S, Matsusawa T (2013) Inflence of latent heat in the nasal cavity. J Biomech Sci Eng 8(3):209–220. https://doi.org/10.1299/jbse.8.209

    Article  Google Scholar 

  5. Zhao K, Jiang J, Blacker K, Lyman B, Dalton P, Cowart BJ et al (2014) Regional peak mucosal cooling predicts the perception of nasal patency. Laryngoscope 124(3):589–595. https://doi.org/10.1002/lary.24265

    Article  PubMed  Google Scholar 

  6. Sozansky J, Houser SM (2014) The physiological mechanism for sensing nasal airflow: a literature review. Int Forum Allergy Rhinol 4(10):834–838. https://doi.org/10.1002/alr.21368

    Article  PubMed  Google Scholar 

  7. Li C, Farag AA, Leach J, Deshpande B, Jacobowitz A, Kim K, Otto BA, Zhao K (2017) Computational fluid dynamics and trigeminal sensory examinations of empty nose syndrome patients. Laryngoscope 127(6):E176–E184. https://doi.org/10.1002/lary.26530

    Article  PubMed  PubMed Central  Google Scholar 

  8. Sullivan CD, Garcia GJ, Frank-Ito DO, Kimbell JS, Rhee JS (2014) Perception of better nasal patency correlates with increased mucosal cooling after surgery for nasal obstruction. Otolaryngol Head Neck Surg 150(1):139–147. https://doi.org/10.1177/0194599813509776

    Article  PubMed  Google Scholar 

  9. Kimbell JS, Frank DO, Laud P, Garcia GJ, Rhee JS (2013) Changes in nasal airflow and heat transfer correlate with symptom improvement after surgery for nasal obstruction. J Biomech 46(15):2634–2643. https://doi.org/10.1016/j.jbiomech.2013.08.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Dayal A, Rhee JS, Garcia GJ (2016) Impact of middle versus inferior total turbinectomy on nasal aerodynamics. Otolaryngol Head Neck Surg 155(3):518–525. https://doi.org/10.1177/0194599816644915

    Article  PubMed  PubMed Central  Google Scholar 

  11. Moreddu E, Le Treut-Gay C, Triglia JM, Nicollas R (2016) Congenital nasal pyriform aperture stenosis: elaboration of a management algorithm from 25 years of experience. Int J Pediatr Otorhinolaryngol 83:7–11. https://doi.org/10.1016/j.ijporl.2016.01.011

    Article  CAS  PubMed  Google Scholar 

  12. Moreddu E, Pereira J, Vaz R, Lena G, Triglia JM, Nicollas R (2015) Combined endonasal and neurosurgical resection of a congenital teratoma with pharyngeal, intracranial and orbital extension: case report, surgical technique and review of the literature. Int J Pediatr Otorhinolaryngol 79(12):1991–1994. https://doi.org/10.1016/j.ijporl.2015.10.056

    Article  PubMed  Google Scholar 

  13. Ghoneima A, AlBarakati S, Jiang F, Kula K, Wasfy T (2015) Computational fluid dynamics analysis of the upper airway after rapid maxillary expansion: a case report. Prog Orthod 16:10. https://doi.org/10.1186/s40510-015-0085-x

    Article  PubMed  PubMed Central  Google Scholar 

  14. Luo H, Sin S, McDonough JM, Isasi CR, Arens R, Wootton DM (2014) Computational fluid dynamics endpoints for assessment of adenotonsillectomy outcome in obese children with obstructive sleep apnea syndrome. J Biomech 47(10):2498–2503. https://doi.org/10.1016/j.jbiomech.2014.03.023

    Article  PubMed  PubMed Central  Google Scholar 

  15. Persak SC, Sin S, McDonough JM, Arens R, Wootton DM (2011) Noninvasive estimation of pharyngeal airway resistance and compliance in children based on volume-gated dynamic MRI and computational fluid dynamics. J Appl Physiol (1985) 111(6):1819–1827. https://doi.org/10.1152/japplphysiol.01230.2010

    Article  Google Scholar 

  16. Landau LD, Lifshitz EM (2013) Fluid mechanics. Elsevier Science, Amsterdam

    Google Scholar 

  17. Mimouni-Benabu O, Meister L, Giordano J, Fayoux P, Loundon N, Triglia JM et al (2012) A preliminary study of computer assisted evaluation of congenital tracheal stenosis: a new tool for surgical decision-making. Int J Pediatr Otorhinolaryngol 76(11):1552–1557. https://doi.org/10.1016/j.ijporl.2012.07.009

    Article  PubMed  Google Scholar 

  18. Moreddu E, Meister L, Philip-Alliez C, Triglia JM, Medale M, Nicollas R (2018) Computational fluid dynamics in the assessment of nasal obstruction in children. Eur Ann Otorhinolaryngol Head Neck Dis

  19. Lindemann J, Leiacker R, Rettinger G, Keck T (2002) Nasal mucosal temperature during respiration. Clin Otolaryngol Allied Sci 27(3):135–139

    Article  CAS  Google Scholar 

  20. Naftali S, Rosenfeld M, Wolf M, Elad D (2005) The air-conditioning capacity of the human nose. Ann Biomed Eng 33(4):545–553

    Article  Google Scholar 

  21. Pless D, Keck T, Wiesmiller K, Rettinger G, Aschoff AJ, Fleiter TR, Lindemann J (2004) Numerical simulation of air temperature and airflow patterns in the human nose during expiration. Clin Otolaryngol Allied Sci 29(6):642–647. https://doi.org/10.1111/j.1365-2273.2004.00862.x

    Article  CAS  PubMed  Google Scholar 

  22. Lintermann A, Meinke M, Schroder W (2013) Fluid mechanics based classification of the respiratory efficiency of several nasal cavities. Comput Biol Med 43(11):1833–1852. https://doi.org/10.1016/j.compbiomed.2013.09.003

    Article  PubMed  Google Scholar 

  23. Wang DY, Lee HP, Gordon BR (2012) Impacts of fluid dynamics simulation in study of nasal airflow physiology and pathophysiology in realistic human three-dimensional nose models. Clin Exp Otorhinolaryngol 5(4):181–187. https://doi.org/10.3342/ceo.2012.5.4.181

    Article  CAS  PubMed Central  Google Scholar 

  24. Avery ME, Normand C (1965) Respiratory physiology in the newborn infant. Anesthesiology 26:510–521. https://doi.org/10.1097/00000542-196507000-00015

    Article  CAS  PubMed  Google Scholar 

  25. Wiesmiller K, Keck T, Leiacker R, Lindemann J (2007) Simultaneous in vivo measurements of intranasal air and mucosal temperature. Eur Arch Otorhinolaryngol 264(6):615–619. https://doi.org/10.1007/s00405-006-0232-6

    Article  PubMed  Google Scholar 

  26. Liener K, Leiacker R, Lindemann J, Rettinger G, Keck T (2003) Nasal mucosal temperature after exposure to cold, dry air and hot, humid air. Acta Otolaryngol 123(7):851–856

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eric Moreddu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

According to French law, ethical approval was not needed for this kind of research. This study was conducted in accordance with the Declaration of Helsinki and French Good Clinical Practices.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moreddu, E., Meister, L., Dabadie, A. et al. Numerical simulation of nasal airflows and thermal air modification in newborns. Med Biol Eng Comput 58, 307–317 (2020). https://doi.org/10.1007/s11517-019-02092-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11517-019-02092-w

Keywords

Navigation