Skip to main content

Advertisement

Log in

Design and evaluation of an accurate CNR-guided small region iterative restoration-based tumor segmentation scheme for PET using both simulated and real heterogeneous tumors

  • Original Article
  • Published:
Medical & Biological Engineering & Computing Aims and scope Submit manuscript

Abstract

Tumor delineation accuracy directly affects the effectiveness of radiotherapy. This study presents a methodology that minimizes potential errors during the automated segmentation of tumors in PET images. Iterative blind deconvolution was implemented in a region of interest encompassing the tumor with the number of iterations determined from contrast-to-noise ratios. The active contour and random forest classification-based segmentation method was evaluated using three distinct image databases that included both synthetic and real heterogeneous tumors. Ground truths about tumor volumes were known precisely. The volumes of the tumors were in the range of 0.49–26.34 cm3, 0.64–1.52 cm3, and 40.38–203.84 cm3 respectively. Widely available software tools, namely, MATLAB, MIPAV, and ITK-SNAP were utilized. When using the active contour method, image restoration reduced mean errors in volumes estimation from 95.85 to 3.37%, from 815.63 to 17.45%, and from 32.61 to 6.80% for the three datasets. The accuracy gains were higher using datasets that include smaller tumors for which PVE is known to be more predominant. Computation time was reduced by a factor of about 10 in the smaller deconvolution region. Contrast-to-noise ratios were improved for all tumors in all data. The presented methodology has the potential to improve delineation accuracy in particular for smaller tumors at practically feasible computational times.

Evaluation of accurate lesion volumes using CNR-guided and ROI-based restoration method for PET images

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

3D-OSEM:

3D ordered subset expectation maximization

ACRF:

Active contour and random forest classification-based segmentation

AT:

Adaptive thresholding

CE:

Classification error

CNR:

Contrast-to-noise ratio

DSC:

Dice similarity coefficient

FCM:

Fuzzy C-means

FNF:

False negative volume fraction

FOV:

Field of view

FPF:

False positive volume fraction

FWHM:

Full width at half maximum

MAE:

Mean absolute error

MET:

Maximum entropy thresholding

MSE:

Mean square error

NCAT:

NURBS-based cardiac-torso

NEMA:

National Electrical Manufacturers Association image quality phantom

PSF:

Point spread function

PSNR:

Peak signal to noise ratio

PVC:

Partial volume correction

PVE:

Partial volume effect

RC:

Recovery coefficients

RG:

Region growing

ROI:

Region of interest

RTP:

Radiation treatment planning

SNR:

Signal to noise ratio

SSIM:

Structural similarity index

SUV:

Standardized uptake value

TPF:

True positive volume fraction

VE%:

Volume error percentage

VOI:

Volume of interest

References

  1. deKemp RA, Wells RG, Beanlands RSB (2018) Lesion contrast recovery for partial-volume averaging: quantitative correction or qualitative enhancement? J Nucl Cardiol 25:1757–1759. https://doi.org/10.1007/s12350-017-0869-0

    Article  PubMed  Google Scholar 

  2. Jomaa H, Mabrouk R, Khlifa N (2018) Post-reconstruction-based partial volume correction methods: a comprehensive review. Biomed Signal Process Control 46:131–144. https://doi.org/10.1016/j.bspc.2018.05.029

    Article  Google Scholar 

  3. Erlandsson K (2017) Partial volume correction in PET imaging. In: Basic science of PET imaging. Springer, pp 355–378. doi: https://doi.org/10.1007/978-3-319-40070-9_15

    Google Scholar 

  4. Bettinardi V, Castiglioni I, De Bernardi E, Gilardi MC (2014) PET quantification: strategies for partial volume correction. Clin Trans Imaging 2:199–218. https://doi.org/10.1007/s40336-014-0066-y

    Article  Google Scholar 

  5. Hielscher AH Model-based iterative image reconstruction for photon migration tomography. In, 1997. International Society for Optics and Photonics, pp 106–117

  6. Rousset O, Rahmim A, Alavi A, Zaidi H (2007) Partial volume correction strategies in PET. PET Clin 2:235–249. https://doi.org/10.1016/j.cpet.2007.10.005

    Article  PubMed  Google Scholar 

  7. David LB, Ryan TF, James EH, Robert JN, Robert J (2010) A method for partial volume correction of PET-imaged tumor heterogeneity using expectation maximization with a spatially varying point spread function. Phys Med Biol 55:221–236. https://doi.org/10.1088/0031-9155/55/1/013

    Article  Google Scholar 

  8. Hatt M, Le Pogam A, Visvikis D, Pradier O, Le Rest CC (2012) Impact of partial-volume effect correction on the predictive and prognostic value of baseline 18F-FDG PET images in esophageal cancer. J Nucl Med 53:12–20. https://doi.org/10.2967/jnumed.111.092775

    Article  CAS  PubMed  Google Scholar 

  9. Kirov AS, Piao JZ, Schmidtlein CR (2008) Partial volume effect correction in PET using regularized iterative deconvolution with variance control based on local topology. Phys Med Biol 53:2577–2591. https://doi.org/10.1088/0031-9155/53/10/009

    Article  CAS  PubMed  Google Scholar 

  10. Merlin T, Visvikis D, Fernandez P, Lamare F (2015) A novel partial volume effects correction technique integrating deconvolution associated with denoising within an iterative PET image reconstruction. Med Phys 42:804–819. https://doi.org/10.1118/1.4905162

    Article  PubMed  Google Scholar 

  11. Rizzo G, Castiglioni I, Russo G, Tana MG, Dell'Acqua F, Gilardi MC, Fazio F, Cerutti S (2007) Using deconvolution to improve PET spatial resolution in OSEM iterative reconstruction. Methods Inf Med 46:231–235. https://doi.org/10.1055/s-0038-1625413

    Article  CAS  PubMed  Google Scholar 

  12. Teo B-K, Seo Y, Bacharach SL, Carrasquillo JA, Libutti SK, Shukla H, Hasegawa BH, Hawkins RA, Franc BL (2007) Partial-volume correction in PET: validation of an iterative postreconstruction method with phantom and patient data. J Nucl Med 48:802–810. https://doi.org/10.2967/jnumed.106.035576

    Article  PubMed  Google Scholar 

  13. Guvenis A, Koc A (2015) Optimising delineation accuracy of tumours in PET for radiotherapy planning using blind deconvolution. Radiat Prot Dosim 165:495–498. https://doi.org/10.1093/rpd/ncv110

    Article  CAS  Google Scholar 

  14. Li L, Wang J, Lu W, Tan S (2017) Simultaneous tumor segmentation, image restoration, and blur kernel estimation in PET using multiple regularizations. Comput Vis Image Underst 155:173–194. https://doi.org/10.1016/j.cviu.2016.10.002

    Article  PubMed  Google Scholar 

  15. Koç A, Güvenış A Implementation method in blind deconvolution based tumor segmentation using simulated PET images. In, 2017. IEEE, pp 1–4. doi:https://doi.org/10.1109/TIPTEKNO.2017.8238127

  16. Cysouw MCF, Kramer GM, Schoonmade LJ, Boellaard R, De Vet HCW, Hoekstra OS (2017) Impact of partial-volume correction in oncological PET studies: a systematic review and meta-analysis. Eur J Nucl Med Mol Imaging 44:2105–2116

    Article  PubMed  PubMed Central  Google Scholar 

  17. Conti M, Casey ME Estimating the optimal iteration number in iterative reconstruction: a statistical approach. In, 2007. IEEE, pp 4389–4394. doi:https://doi.org/10.1109/NSSMIC.2007.4437085

  18. Clark K, Vendt B, Smith K, Freymann J, Kirby J, Koppel P, Moore S, Phillips S, Maffitt D, Pringle M (2013) The Cancer Imaging Archive (TCIA): maintaining and operating a public information repository. J Digit Imaging 26:1045–1057. https://doi.org/10.1007/s10278-013-9622-7

    Article  PubMed  PubMed Central  Google Scholar 

  19. Muzi P, Wanner, Michelle, Kinahan, Paul. Data from RIDER_PHANTOM_PET-CT (2015). The Cancer Imaging Archive. doi: https://doi.org/10.7937/K9/TCIA.2015.8WG2KN4W. Accessed 19 April 2016

  20. Tomei S, Reilhac A, Visvikis D, Boussion N, Odet C, Giammarile F, Lartizien C (2010) OncoPET_DB: a freely distributed database of realistic simulated whole body 18F-FDG PET images for oncology. IEEE Trans Nucl Sci 57:246–255. https://doi.org/10.1109/TNS.2009.2034375

    Article  Google Scholar 

  21. Papadimitroulas P, Loudos G, Le Maitre A, Hatt M, Tixier F, Efthimiou N, Nikiforidis GC, Visvikis D, Kagadis GC (2013) Investigation of realistic PET simulations incorporating tumor patient’s specificity using anthropomorphic models: creation of an oncology database. Med Phys 40:112506. https://doi.org/10.1118/1.4826162

    Article  PubMed  Google Scholar 

  22. Bakr S, Gevaert O, Echegaray S, Ayers K, Zhou M, Shafiq M, Zheng H, Zhang W, Leung A, Kadoch M (2017) Data for NSCLC Radiogenomics Collection. The Cancer Imaging Archive

  23. Gevaert O, Xu J, Hoang CD, Leung AN, Xu Y, Quon A, Rubin DL, Napel S, Plevritis SK (2012) Non-small cell lung cancer: identifying prognostic imaging biomarkers by leveraging public gene expression microarray data—methods and preliminary results. Radiology 264:387–396

    Article  PubMed  PubMed Central  Google Scholar 

  24. Beyer T, Townsend DW, Czernin J, Freudenberg LS (2011) The future of hybrid imaging—part 2: PET/CT. Insights into Imaging 2:225–234. https://doi.org/10.1007/s13244-011-0069-4

    Article  PubMed  PubMed Central  Google Scholar 

  25. El-Gamal FE-ZA, Elmogy M, Atwan A (2016) Current trends in medical image registration and fusion. Egyptian Informatics Journal 17:99–124. https://doi.org/10.1016/j.eij.2015.09.002

    Article  Google Scholar 

  26. Mahmoudzadeh AP, Kashou NH (2013) Evaluation of interpolation effects on upsampling and accuracy of cost functions-based optimized automatic image registration. Journal of Biomedical Imaging 2013:16. https://doi.org/10.1155/2013/395915

    Article  Google Scholar 

  27. Jiang S, Zhang P, Han T, Liu W, Liu M (2013) Tri-linear interpolation-based cerebral white matter fiber imaging. Neural Regen Res 8:2155–2164. https://doi.org/10.3969/j.issn.1673-5374.2013.23.005

    Article  PubMed  PubMed Central  Google Scholar 

  28. McAuliffe MJ, Lalonde FM, McGarry D, Gandler W, Csaky K, Trus BL Medical image processing, analysis and visualization in clinical research. In: Computer-based medical systems, 2001. CBMS 2001. Proceedings. 14th IEEE Symposium on, 2001. IEEE, pp 381–386. doi:https://doi.org/10.1109/CBMS.2001.941749

  29. Ayers GR, Dainty JC (1988) Iterative blind deconvolution method and its applications. Opt Lett 13:547–549. https://doi.org/10.1364/OL.13.000547

    Article  CAS  PubMed  Google Scholar 

  30. Fish DA, Brinicombe AM, Pike ER, Walker JG (1995) Blind deconvolution by means of the Richardson–Lucy algorithm. JOSA A 12:58–65. https://doi.org/10.1364/JOSAA.12.000058

    Article  Google Scholar 

  31. MATLAB and Image Processing Toolbox Release 2015a, MathWorks I, Natick, Massachusetts, United States

  32. Medical Image Processing, Analysis and Visualization (MIPAV) (version 7.3.0) 2015, The National Institutes of Health Center for Information Technology (CIT), http://mipav.cit.nih.gov/

  33. Greffier J, Macri F, Larbi A, Fernandez A, Khasanova E, Pereira F, Mekkaoui C, Beregi JP (2015) Dose reduction with iterative reconstruction: optimization of CT protocols in clinical practice. Diag Interven Imaging 96:477–486. https://doi.org/10.1016/j.diii.2015.02.007

    Article  CAS  Google Scholar 

  34. Nandy K, Kim J, McCullough DP, McAuliffe M, Meaburn KJ, Yamaguchi TP, Gudla PR, Lockett SJ (2014) Segmentation and quantitative analysis of individual cells in developmental tissues. In: Mouse Molecular Embryology. Springer, pp 235–253

  35. Cabello J, Bailey A, Kitchen I, Guy M, Wells K Segmentation of low contrast-to-noise ratio images applied to functional imaging using adaptive region growing. In, 2009. International Society for Optics and Photonics, p 725940. doi: https://doi.org/10.1117/12.811325

  36. Foster B, Bagci U, Mansoor A, Xu Z, Mollura DJ (2014) A review on segmentation of positron emission tomography images. Comput Biol Med 50:76–96. https://doi.org/10.1016/j.compbiomed.2014.04.014

    Article  PubMed  Google Scholar 

  37. Yushkevich PA, Piven J, Hazlett HC, Smith RG, Ho S, Gee JC, Gerig G (2006) User-guided 3D active contour segmentation of anatomical structures: significantly improved efficiency and reliability. Neuroimage 31:1116–1128. https://doi.org/10.1016/j.neuroimage.2006.01.015

    Article  PubMed  Google Scholar 

  38. ITK-SNAP, 2017 (version 3.6.0), Yushkevich PA, Gerig G, http://itksnap.org

  39. Davis JB, Reiner B, Huser M, Burger C, Székely G, Ciernik IF (2006) Assessment of 18F PET signals for automatic target volume definition in radiotherapy treatment planning. Radiother Oncol 80:43–50

    Article  CAS  PubMed  Google Scholar 

  40. Sahoo PK, Soltani S, Wong AKC (1988) A survey of thresholding techniques. Comput Vision, Graphics, Image Process 41:233–260

    Article  Google Scholar 

  41. Yushkevich PA, Gao Y, Gerig G ITK-SNAP: An interactive tool for semi-automatic segmentation of multi-modality biomedical images. In, 2016. IEEE, pp 3342–3345

  42. Caselles V, Kimmel R, Sapiro G (1997) Geodesic active contours. Int J Comput Vis 22:61–79

    Article  Google Scholar 

  43. Zhou H, Schaefer G, Shi C (2009) Fuzzy C-means techniques for medical image segmentation. In: Fuzzy systems in bioinformatics and computational biology. Springer, pp 257–271

  44. Khamwan K, Krisanachinda A, Pluempitiwiriyawej C (2012) Automated tumour boundary delineation on 18F-FDG PET images using active contour coupled with shifted-optimal thresholding method. Phys Med Biol 57:5995–6005. https://doi.org/10.1088/0031-9155/57/19/5995

    Article  PubMed  Google Scholar 

  45. Zou KH, Warfield SK, Bharatha A, Tempany CMC, Kaus MR, Haker SJ, Wells Iii WM, Jolesz FA, Kikinis R (2004) Statistical validation of image segmentation quality based on a spatial overlap index1: scientific reports. Acad Radiol 11:178–189

    Article  PubMed  PubMed Central  Google Scholar 

  46. IBM Corp. Released 2015. IBM SPSS Statistics for Windows, Version 23.0. Armonk, NY: IBM Corp.,

  47. Hatt M, Le Rest CC, Turzo A, Roux C, Visvikis D (2009) A fuzzy locally adaptive Bayesian segmentation approach for volume determination in PET. IEEE Trans Med Imaging 28:881–893. https://doi.org/10.1109/TMI.2008.2012036

    Article  PubMed  PubMed Central  Google Scholar 

  48. Firouzian A, Kelly MD, Declerck JM (2014) Insight on automated lesion delineation methods for PET data. EJNMMI Res 4:69. https://doi.org/10.1186/s13550-014-0069-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Cheebsumon P, Yaqub M, van Velden FHP, Hoekstra OS, Lammertsma AA, Boellaard R (2011) Impact of [18 F] FDG PET imaging parameters on automatic tumour delineation: need for improved tumour delineation methodology. Eur J Nucl Med Mol Imaging 38:2136–2144. https://doi.org/10.1007/s00259-011-1899-5

    Article  PubMed  PubMed Central  Google Scholar 

  50. Soret M, Bacharach SL, Buvat I (2007) Partial-volume effect in PET tumor imaging. J Nucl Med 48:932–945. https://doi.org/10.2967/jnumed.106.035774

    Article  PubMed  Google Scholar 

  51. Xu Z, Gao M, Papadakis GZ, Luna B, Jain S, Mollura DJ, Bagci U (2018) Joint solution for PET image segmentation, denoising, and partial volume correction. Med Image Anal 46:229–243. https://doi.org/10.1016/j.media.2018.03.007

    Article  PubMed  PubMed Central  Google Scholar 

  52. Kipli K, Krishnan S, Zamhari N, Muhammad MS, Masra SMW, Chin KL, Lias K Full reference image quality metrics and their performance. In, 2011. IEEE, pp 33–38

  53. Laasmaa M, Vendelin M, Peterson P (2011) Application of regularized Richardson–Lucy algorithm for deconvolution of confocal microscopy images. J Microsc 243:124–140. https://doi.org/10.1111/j.1365-2818.2011.03486.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The authors sincerely acknowledge the National Cancer Institute and the National Institute of Health for RIDER PHANTOM PET-CT data obtained from the publicly available Cancer Imaging Archive (TCIA). In addition, the authors would like to thank Sandrine Tomei, Anthonin Reilhac, Dimitris Visvikis, Nicolas Boussion, Christophe Odet, Francesco Giammarile, and Carole Lartizien for simulated PET oncology images obtained from the OncoPET_DB database. Finally, the authors also thank Panagiotis Papadimitroulas, George Loudos, Amandine Le Maitre, Mathieu Hatt, Florent Tixier, Nikos Efthimiou, George C. Nikiforidis, Dimitris Visvikis, and George C. Kagadis for simulated clinical images obtained from an oncology database.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alpaslan Koç.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(PDF 90 kb)

ESM 2

(PDF 979 kb)

ESM 3

(PDF 663 kb)

ESM 4

(PDF 730 kb)

ESM 5

(PDF 73 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Koç, A., Güveniş, A. Design and evaluation of an accurate CNR-guided small region iterative restoration-based tumor segmentation scheme for PET using both simulated and real heterogeneous tumors. Med Biol Eng Comput 58, 335–355 (2020). https://doi.org/10.1007/s11517-019-02094-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11517-019-02094-8

Keywords

Navigation