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Abstract High-quality annotations for medical images

are always costly and scarce. Many applications of deep

learning in the field of medical image analysis face the

problem of insufficient annotated data. In this paper, we

present a semi-supervised learning method for chronic

gastritis classification using gastric X-ray images. The

proposed semi-supervised learning method based on tri-

training can leverage unannotated data to boost the

performance that is achieved with a small amount of an-

notated data. We utilize a novel learning method named

Between-Class learning (BC learning) that can consid-
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erably enhance the performance of our semi-supervised

learning method. As a result, our method can effec-

tively learn from unannotated data and achieve high

diagnostic accuracy for chronic gastritis.

Keywords Chronic gastritis · computer-aided diag-

nosis · medical image analysis · convolutional neural
network · semi-supervised learning

1 Introduction

It is known that chronic gastritis may lead to gastric

cancer, and gastric X-ray images can be used for di-

agnosing chronic gastritis and identifying the risk of

gastric cancer [29]. Clinicians can make a highly reli-

able diagnosis with gastric X-ray images, but there is

a huge burden of reading many gastric X-ray images.

Additionally, clinicians must have abundant experience

and technical knowledge of reading gastric X-ray images

in order to make an accurate diagnosis. To reduce the

burden for clinicians and overcome the possible prob-

lem of shortage of experienced clinicians, the develop-

ment of computer-aided diagnosis (CAD) systems that

automatically analyze gastric X-ray images and detect

chronic gastritis is needed.

In recent years, deep learning technologies have made

tremendous achievements in the field of computer vi-

sion [17] and have considerably outperformed conven-

tional machine learning methods in various tasks. Con-

volutional neural networks (CNNs), the most popular

deep learning technology, are also widely utilized in

tasks of medical image analysis [18] such as tissue seg-

mentation [12, 19, 20, 28] and nodule detection [5, 11,

21,23]. For the task of gastritis classification using gas-

tric X-ray images, we have proposed methods of both

conventional machine learning and deep learning in our
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previous works [25, 26]. The deep learning method [26]

trained two CNNs. One CNN is trained for extracting

patches related to gastritis from all regions in the whole

X-ray images and the other CNN is trained with the ex-

tracted gastritis-related patches to recognize gastritis

accurately. The deep learning method showed an obvi-

ously better performance than that of the conventional

machine learning method [25], which utilized hand-crafted

features and a support vector machine (SVM) [6], and

the deep learning method even outperformed diagnosis

with blood inspection [16]. However, like most of the

studies on utilization of deep learning in medical im-

age tasks, our previous deep learning method is based

on supervised learning and its performance is therefore

dependent on a large number of gastric X-ray images

being annotated by experts. Supervised learning meth-

ods always require a massive dataset to avoid overfit-

ting and thus may not be practical for some applica-

tions of medical images. The main problem of applying

deep learning technologies to medical image analysis is

the difficulty in obtaining annotations. High-quality an-

notations of medical images require clinicians or tech-

nologists who are experienced and specialize in specific

studies. One possible solution for this problem is semi-

supervised learning. Semi-supervised learning methods

utilize both limited annotated data and unannotated

data, which are usually abundant and easy to obtain.

By leveraging unannotated data, semi-supervised learn-

ing methods can outperform supervised learning meth-

ods using only a small amount of annotated data. Some

researchers have presented results of their works using

semi-supervised learning in medical image tasks [1–3,

22, 31], but the use of semi-supervised learning for di-

agnosing chronic gastritis with gastric X-ray images has

not been explored.

In this paper, we present a semi-supervised learning

method based on tri-training [32] for the task of chronic

gastritis classification using gastric X-ray images. Tri-

training is a disagreement-based semi-supervised learn-

ing method [33] that is practical and easy to imple-

ment compared with some other semi-supervised learn-

ing methods with sophisticated hyper-parameters. The

method trains three models and exploits the disagree-

ments of the models to augment the training set of

each model with unlabeled data. The models can be

retrained with augmented training sets iteratively to

achieve better performance. We perform tri-training with

three CNNs of different architectures to keep the models

diverse and strengthen robustness of the results. Fur-

thermore, we employ the Between-Class learning (BC

learning) method proposed by Tokozume et al. [27]

as a data augmentation method for training. The trick

of BC learning can also improve the learning in terms

of Fisher’s criterion [10] and considerably boost the

performance. Results of experiments indicate that our

semi-supervised learning method can realize a high level

of diagnostic accuracy for chronic gastritis even with a

very limited number of annotated images. Our method

can also be employed with various models and is ex-

pected to be applied to various medical image tasks.

The paper is organized as follows. In Section 2, we

describe in detail the chronic gastritis classification with

our semi-supervised learning method. In Section 3, we

show the experimental settings and results that prove

the effectiveness of our method. We further discuss the

experimental results in Section 4. Finally, we conclude

the paper in Section 5.

2 Semi-supervised learning for chronic gastritis

classification

We propose a patch-based method to classify X-ray

images. The original X-ray images are cropped into

patches and classified into three classes including gastri-

tis, non-gastritis and irrelevant (outside the stomach).

The classification result of a whole X-ray image is ob-

tained by performing a simplest majority voting among

patches predicted to be gastritis and non-gastritis from

the image. Our semi-supervised learning method has

been developed with a tri-training architecture and a

data augmentation method known as BC learning (or

mixup [30], a training trick similar to BC learning).

The procedures of our method are shown in Fig. 1. In

the rest of this section, research data and patch pro-

ducing are described in Subsection 2.1, and details of

tri-training and BC learning are given in Subsection 2.2

and Subsection 2.3.

2.1 Research Data

In our study, we used 815 gastric X-ray images from

different patients provided by The University of Tokyo

Hospital. The labels of patients were obtained by coop-

erative evaluation of X-ray images and endoscopic im-

ages. Specifically, X-ray images were classified into four

classes, normal, mild, moderate and severe, according

to the atrophic level [8], and endoscopic images were

evaluated with the Kimura-Takemoto seven-grade clas-

sification that contains seven classes including no at-

rophic change (C0), three closed types of atrophic gas-

tritis (C1, C2, C3) and three open types of atrophic gas-

tritis (O1, O2, O3) [15]. We labeled 240 patients with

results of mild, moderate or severe for X-ray images and

results of C2, C3, O1, O2 or O3 for endoscopic images as

positive (gastritis). A total of 575 patients with results
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of normal for X-ray images and results of C0 for endo-

scopic images were labeled as negative (non-gastritis).

To exclude potential noises, our dataset included only

patients that were diagnosed as having gastritis or non-

gastritis consistently by using both X-ray images and

endoscopic images. A diagnosis of C1, which is the at-

rophic borderline in the Kimura-Takemoto seven-grade

classification, is too ambiguous to make a definite di-

agnosis of either gastritis nor non-gastritis. Hence, pa-

tients diagnosed as C1 were not included in our dataset.

It is very difficult for original X-ray images with

a high resolution of 2048 × 2048 pixels to be directly

processed by CNNs, and it is also not appropriate to

downsample the original images since the fine-grained

features that play a significant role in diagnosis may be

harmed. Therefore, we cropped the images with a stride

of 50 pixels into patches with a resolution of 299 × 299

pixels. By using the patches, the number of training

samples was increased hundreds of times, which can

also make the training of CNNs easier. The patches were

categorized into the following three classes: region with

gastritis, region without gastritis and region outside the

stomach. The categorization for patches was performed

in terms of hand-craft stomach boundaries and patient

labels both annotated by a radiological technologist.

Specifically, patches from gastritis patients were labeled

as either a region with gastritis or a region outside the

stomach, and patches from non-gastritis patients were

labeled as either a region without gastritis or a region

outside the stomach.

2.2 Semi-supervised Learning with Tri-training

Tri-training proposed by Zhou et al. [32] is a semi-

supervised learning algorithm for discriminative mod-

els. It was originally implemented with conventional

machine learning models such as an SVM and random

forest [4], and it can also be combined with deep learn-

ing. In brief, in tri-training, performance promotion is

achieved by augmenting the labeled dataset with unla-

beled data accompanied by the corresponding predicted

labels. In the whole training procedure, three models

are firstly trained with three initial training sets, and

then two steps are performed iteratively: 1) augmenting

each of the three training sets and 2) newly training the

three models with the corresponding augmented train-

ing sets obtained in 1). The key idea of tri-training is its

particular augmenting architecture, in which the train-

ing set of each model is augmented by the other two

models. Specifically, for each model, unlabeled samples

that are categorized as the same class by the other two

models are added to the training set of the model, ac-

companied by a consistent predicted label. Note that we

do not set a threshold of probability to select unlabeled

samples since we think the consistent predictions made

by two models are sufficiently reliable for training and

redundant hyper-parameters are not desired. As illus-

trated in Fig. 1, the tri-training algorithm is composed

of the following three steps.

– Step 1. Three training sets are sampled by the

bootstrap method [9] from labeled data and then

three SVM classifiers are trained with the training

sets. The features for training SVMs are extracted

with the Inceptionv3 network [24] pre-trained on the

Imagenet dataset [7].

– Step 2. Labels of unlabeled samples are predicted

with the latest three models (SVMs or CNNs) and

then the unlabeled samples that are classified into

the same class by two models are added to the train-

ing set of the remaining model.

– Step 3. Three CNN classifiers are trained with the

augmented training sets. Then the process goes back

to step 2.

Note that we utilize SVMs as the initial model since the

size of the labeled dataset may be extremely small and

CNNs trained with a very limited number of samples

tend to fall into overfitting and to be unstable. In step 3,

the models trained with augmented training sets are all

CNNs. We use three different network structures for the

CNNs to keep the models diverse and enhance robust-

ness of the method. The networks are constructed in the

forms of ResNet [13], DenseNet [14] and the simplest ar-

chitecture composed of several convolutional and fully

connected layers, respectively.

Although the augmented training sets include some

noise samples with incorrect labels, the models trained

with augmented training sets can obviously outperform

models trained with only labeled data, especially in the

case of limited labeled data. Then with the outperform-

ing models, augmented training sets of higher quality

are obtained and the performances of models trained

with the augmented training sets are further improved.

The iteration times can be determined according to the

similarity of the three models’ predictions for unlabeled

data.

2.3 Data Augmentation with BC Learning

BC learning is proposed as a novel learning method that

can boost the performance of CNNs for image classifi-

cation [27]. We employ the BC learning method to aug-

ment the training data in our semi-supervised learning

method. The BC learning method can be simply defined

as follows.

X = r X1 + (1− r) X2 (1)
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Y = r Y1 + (1− r) Y2 (2)

Here, X1 and X2 are original image samples, Y1 and Y2

are one-hot label vectors of the samples, and r is always

a random ratio sampled from a uniform distribution of

[0, 1] in the whole training. The pair of X and Y is a

new augmented sample for training.

Different from other data augmentation methods

that only consider the vicinity of a single sample, BC

learning produces samples between two different sam-

ples and hence can model the feature distributions across

different classes. The constraints shown in Eq. (1) and

Eq. (2) can enlarge the intra-class distance and narrow

the inter-class distance simultaneously in the feature

distributions. Furthermore, the positional relationship

among feature distributions is also regularized so that

the between-class samples are not distributed around

the decision boundaries of other classes. Benefiting from

modeling the feature distributions, models trained with

BC learning have greater generalization ability and can

achieve better performances.

In our method, we produce samples between differ-

ent classes as well as inside a class, namely, the origi-

nal samples X1 and X2 may either belong to different

classes or the same class. This is different from the set-

ting that performed best in the original work on BC

learning, but in our semi-supervised learning method,

we think this setting can better adapt the training sets

involving some noise. To prevent the augmented train-

ing sets from being polluted by more noise, as the sam-

pling strategy, either X1 or X2 must be sampled only

from the labeled data. Note that BC learning is utilized

only for training CNNs since an SVM cannot be trained

with between-class labels.

3 Experiments

3.1 Implementation Details

3.1.1 Network Architectures

The architectures of the three CNNs are described here

and shown in Fig. 2. In all three networks, each convo-

lutional layer is followed by the ReLU function and a

batch normalization layer.

The simplest network The simplest network is

composed of three convolutional layers and two fully

connected layers. The filter sizes of the convolutional

layers are 5×5×32, 5×5×64 and 3×3×64, respectively.

Each convolutional layer is followed by a max-pooling

layer. Two fully connected layers with 100 units and 3

units respectively are connected to the top of the con-

volutional layers.

ResNet-based network The ResNet-based net-

work is composed of a convolutional layer, three resid-

ual blocks and two fully connected layers. The first

convolutional layer and two fully connected layers are

the same as those of the simplest network. Each resid-

ual block consists of two units, and each unit contains

two convolutional layers. The filter sizes of the resid-

ual blocks are 5×5×32, 5×5×64 and 3×3×64, respec-

tively. Three max-pooling layers are inserted after the

first convolutional layer, the first residual block and the

second residual block, respectively.

DenseNet-based network The DenseNet-based

network is composed of a convolutional layer, three

dense blocks, two transition layers and a fully connected

layer. Different from the ResNet-based network, the

fully connected layer with 100 units is replaced with a

global average pooling layer in this network. Each dense

block consists of three units, and each unit contains a

convolutional layer of 1×1×64 and a convolutional layer

of S×S×16. The filter size S for each block is 5, 5 and

3, respectively. Two transition layers with a compres-

sion factor of 0.5 follow the first and the second dense

blocks, respectively. Three max-pooling layers are in-

serted after the first convolutional layer and the two

transition layers, respectively.

3.1.2 Training Details

All of the networks were trained with the Stochastic

Gradient Descent (SGD) optimizer. The initial learn-

ing rate was set to 0.001. In training, when the aver-

age loss of the last ten epochs declined by less than

0.01 compared with that of the former ten epochs, the

learning rate was decreased to 0.0001. When the loss de-

cline became less than 0.001, the training was stopped.

Cross entropy loss was utilized to train CNNs when BC

learning was not employed, while Kullback-Leibler di-

vergence loss was utilized for training with BC learning.

All of the CNNs were trained with a mini-batch size of

64. In tri-training, the iteration was performed twice.

3.2 Dataset

As mentioned in Subsection 2.1, 815 gastric X-ray im-

ages with a resolution of 2048×2048 pixels from differ-

ent patients provided by The University of Tokyo Hos-

pital were used in the experiments. Specifically, 200 im-

ages including 100 gastritis images and 100 non-gastritis

images were used as training data, and 615 images in-

cluding 140 gastritis images and 475 non-gastritis im-

ages were used as test data. Some examples of the gas-

tric X-ray images are shown in Fig. 3. In Fig. 3, (a)
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and (b) are gastritis images and (c) and (d) are non-

gastritis images. Patches cropped from the 200 images

of training data include 45,127 patches of regions with

gastritis, 42,785 patches of regions without gastritis and

48,385 patches of regions outside the stomach.

3.3 Evaluation Method and Metrics

Evaluation of a gastric X-ray image is conducted by

using all of the three models to categorize all patches

from the image. Firstly, predictions of the three models

for a patch are averaged as the final prediction for the

patch. Then categorization for an image is performed

by a simple majority voting among patches predicted

to be regions with and without gastritis from the im-

age. In the majority voting, only patches with a high

level of confidence are involved, making the diagnoses

more accurate. Here, the confidence is denoted by the

predicted probability. The threshold of the confidence

was set to 0.7 in all experiments since the results with

this threshold were more stable than the results using

thresholds of 0.5, 0.6, 0.8 and 0.9. In evaluation, we used

the original patches directly rather than performing BC

learning.

We used sensitivity, specificity and harmonic mean

of these two metrics as evaluation metrics for our method.

The metrics are defined as follows.

Sensitivity =
TP

TP + FN
(3)

Specificity =
TN

TN+ FP
(4)

Harmonic mean =
2× Sensitivity × Specificity

Sensitivity + Specificity
(5)

Here, TP, TN, FP and FN refer to true positive, true

negative, false positive and false negative, respectively.

Since there exists a trade-off relationship between sen-

sitivity and specificity, the performance cannot be eval-

uated with sensitivity or specificity independently. The

harmonic mean of these two metrics are utilized to eval-

uate the overall performance. In real-world clinical use,

the balance between sensitivity and specificity can be

regulated by adapting the voting system. For exam-

ple, if the user places more importance on sensitivity,

the majority voting can be adapted to a threshold-

controlling voting that lets the gastritis patches win

with a number less than the non-gastritis patches.

3.4 Experimental Results

The results obtained by our method when using 10,

20, 50, 100, 200 annotated images are shown in Ta-

ble 1. The convergence process of our method when

using 100 annotated images is shown in Table 2. As

supplemental experiments, we also performed two sets

of comparison experiments. Firstly, we compared our

method with its ablated version, tri-training without

BC learning, to certify the effectiveness of BC learning.

The results are shown in Table 3. Table 4 shows the

results of a comparison of our semi-supervised learning

method and supervised learning with CNNs using no

unannotated data. The results shown in Table 1 were

obtained over 3 runs and the results shown in Table 2,

Table 3 and Table 4 were obtained over 8 runs. The

harmonic mean is expressed as the mean and standard

deviation of the multiple runs. In each run, annotated

images were randomly sampled from the 200 images of

training data, but the ratio of gastritis and non-gastritis

images was kept to 1:1. In the case of 200 annotated

images, the models were trained in the form of super-

vised learning accompanied by BC learning instead of

performing tri-training.

3.4.1 Results Obtained by Our Semi-supervised

Learning Method

As shown in Table 1, our method achieved a high per-

formance for diagnosing chronic gastritis even with an

extremely small number of annotated images such as

10 and 20 images. Compared with supervised learning

using 200 annotated images, almost the same perfor-

mance could be realized by using our semi-supervised

learning method with only half of the 200 annotated

images. Additionally, it is clear that the performance

can be boosted by increasing the number of annotated

images. Table 2 shows the convergence process of our

method when using 100 annotated images. The per-

formances after the second iteration showed no further

improvements.

3.4.2 Results of Supplemental Experiments

Table 3 and Table 4 show results using only 100 an-

notated images. We think that the conclusions based

on results obtained by using different numbers of an-

notated images will remain unchanged. As shown in

Table 3, our method, tri-training with BC learning,

achieved better performance than its ablated version

without the use of BC learning when using 100 an-

notated images. Therefore, it was confirmed that data

augmentation with BC learning can greatly boost the

performance of our semi-supervised learning method.

As can be seen in Table 4, semi-supervised learning ben-

efited from unannotated images and thus outperformed

supervised learning when using 100 annotated images.
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In addition, BC learning can also improve the perfor-

mance of supervised learning. Student’s t-test was per-

formed for statistical significance analysis using results

of 8 runs for BC learning and 8 runs for semi-supervised

learning. For the contrast between using and not using

BC learning shown in Table 3, we obtained a t-value of

2.73 and p < 0.05. However, for the contrast between

semi-supervised learning and supervised learning shown

in Table 4, the t-value was 1.63 and the p-value was less

than 0.2, which represents a low level of significance. We

think that this is because the number of annotated im-

ages was relatively large and the same as the number

of unannotated images. In general, unannotated medi-

cal images are easier to collect than annotated medical

images and thus the number of unannotated images is

much larger. With more unannotated images, the pro-

motion of performance attributed to semi-supervised

learning can be more significant.

4 Discussion

We certified the effectiveness of our method with a se-

ries of experiments. As shown in Table 1, we confirmed

that the models can gain greater capacity with a larger

amount of labeled data. However, the improvement be-

came very slight after the number of annotated images

exceeded 50 since the total number of images of train-

ing data is always 200. Further improvement can be ex-

pected if there are more unannotated data in the train-

ing sets with an increase in the number of annotated im-

ages. Moreover, the standard deviation of the harmonic

mean shown in Table 1 clearly decreased, indicating en-

hancement of stability of the models, with an increase

in the number of annotated images. The main factor

affecting the stability of the final models is the stabil-

ity of the initial SVM models. Since chronic gastritis of

different atrophic levels has relatively diverse features

and the images may be of different quality for training a

diagnosis model of chronic gastritis, the performances

of initial models trained with a small number of ran-

domly sampled images may vary significantly. Hence,

the models can gain stronger stability from more an-

notated images. Note that the supervised learning also

has a slight deviation since there is still randomness in

the network initialization and training process. Also,

the results presented in Table 3 and Table 4 show that

BC learning can not only boost the overall performance

but also stabilize the performance for both supervised

learning and semi-supervised learning.

Some examples of TP, TN, FN and FP when train-

ing the models with our semi-supervised learning method

using 100 annotated images are shown in Fig. 4∼Fig. 7,

respectively. To illustrate how the regions contribute to

the final diagnosis, we also show the probability heat

maps of the whole images. For true positive and false

positive images, the values in the heat maps represent

the probabilities of gastritis. For true negative and false

negative images, the values in the heat maps represent

the probabilities of non-gastritis. As shown in the fig-

ures, the final decisions were mostly made by the re-

gions inside the stomach, while the regions outside the

stomach were assigned low probabilities for both gastri-

tis and non-gastritis. Fig. 6 (a) shows a sample that is

clinically difficult to diagnose, while Fig. 6 (b) includes

massive barium sulfate that flowed out into the bowel

so that many patches became noisy. In Fig. 7 (a), the

textures did not appear clearly, which made the recog-

nition more difficult. Similar to Fig. 6 (b), Fig. 7 (b) was

also falsely diagnosed due to the barium sulfate flow-

ing out. The above-mentioned problems can probably

be solved by integrated diagnosis with multiple gastric

X-ray images of a patient taken at different positions

since images taken at other positions may have higher

quality and better features for diagnosis.

In this paper, we showed how performances of auto-

matic classification models based on supervised learn-

ing can be improved with a practical semi-supervised

learning method in the task of gastritis classification

using gastric X-ray images. In addition to this task,

it is expected that our method can be used for various

classification tasks in the field of medical image analysis

due to its high ability of generalization and flexibility.

Semi-supervised learning is innately fit for applications

of medical image analysis since well-annotated medical

images that can be used for training supervised learn-

ing models are always costly and scarce. With semi-

supervised learning, unannotated data will not be wasted

and can contribute to further improvements of perfor-

mance. It is expected that utilization of unannotated

data with semi-supervised learning will help in the con-

struction of computer-aided systems with a high level

of robustness.

There are some limitations in our study. Firstly, the

data used for training and testing in the experiments

were all obtained from the same medical facility. The

reliability of our method for gastric X-ray images ob-

tained from different facilities has not been confirmed.

The method may need to be adapted for dealing with

gastric X-ray images from different facilities, and that is

one of our future works. Secondly, as mentioned above,

the method fails to stabilize when the number of an-

notated images becomes small. Also, the method only

performs a two-class classification between gastritis and

non-gastritis. Stabilization of the method and realiza-

tion of multi-grade diagnosis are also aims of our future

works.
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5 Conclusion

A semi-supervised learning method for chronic gastritis

classification using gastric X-ray images is presented in

this paper. The method has been developed with a tri-

training architecture and a data augmentation method

of BC learning. The high performance for diagnosis

achieved by our method indicates its effectiveness and

shows its promise for practical applications. The per-

formance may be further improved by using more un-

labeled data.
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Table 1 Performances of our method using different numbers of annotated images.

Number of annotated images Sensitivity Specificity Harmonic mean

10 0.857 0.864 0.860 ± 0.025

20 0.855 0.889 0.870 ± 0.016

50 0.871 0.945 0.906 ± 0.016

100 0.922 0.907 0.914 ± 0.001

200 0.893 0.953 0.922 ± 0.001
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Table 2 Convergence process of our method when using 100 annotated images.

Model Sensitivity Specificity Harmonic mean

SVM 0.763 0.967 0.852 ± 0.022

CNN (first iteration) 0.892 0.910 0.901 ± 0.013

CNN (second iteration) 0.915 0.914 0.914 ± 0.009
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Table 3 Comparison of tri-training with and without BC learning using 100 annotated images.

Method Sensitivity Specificity Harmonic mean

Tri-training with BC learning (our method) 0.915 0.914 0.914± 0.009

Tri-training without BC learning 0.812 0.963 0.880 ± 0.028
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Table 4 Comparison of our method and supervised learning using 100 annotated images.

Method Sensitivity Specificity Harmonic mean

Our method 0.915 0.914 0.914± 0.009

Supervised learning with BC learning 0.891 0.919 0.903 ± 0.013

Supervised learning without BC learning 0.798 0.951 0.873 ± 0.018
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Bootstrap sampling from labeled data

Eǆtract features of Lϭ͕ LϮ and Lϯ ǁith 
preͲtrained Inceptionǀϯ netǁork

Train three SVM classifiers ǁith 
eǆtracted features

Modelϭ ModelϮ Modelϯ

Predict labels of unlabeled data

Train three CNN classifiers ǁith augmented 
sets Tϭ͕ TϮ and Tϯ using BC learning

Modelϭ ModelϮ Modelϯ

Iterate

LϮ
Ǉ

Lϯ
Ǉ

Lϭ
Ǉ

UϮ
Ǉ͛

Uϯ
Ǉ͛

TϭсLϭнUϭ

Uϭ
Ǉ͛

Lϭ
Ǉ

TϮсLϮнUϮ

UϮ
Ǉ͛

LϮ
Ǉ

TϯсLϯнUϯ

Uϯ
Ǉ͛

Lϯ
Ǉ

Uϭ
Ǉ͛

Stepϭ

StepϮ

Stepϯ

Fig. 1 Procedures of the proposed method. ‘L1’, ‘L2’ and
‘L3’ are randomly sampled training sets from labeled data.
‘U1’, ‘U2’ and ‘U3’ are selected from unlabeled data. Specif-
ically, ‘U1’ is the set of samples for which ‘Model2’ and
‘Model3’ agree, ‘U2’ is the set of samples for which ‘Model1’
and ‘Model3’ agree, and ‘U3’ is the set of samples for which
‘Model1’ and ‘Model2’ agree. ‘y’ denotes ground truth labels,
and ‘y′’ denotes predicted labels.
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Fig. 2 Architectures of three CNNs used in our method.



Title Suppressed Due to Excessive Length 15

(a) (b)

(c) (d)

Fig. 3 Examples of gastric X-ray images: (a) and (b) are gastritis images and (c) and (d) are non-gastritis images.
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(a)

(b)

Fig. 4 Examples of true positives when using 100 annotated images. Left column: gastric X-ray images. Middle column: heat
maps of the probability for gastritis. Right column: overlapped images.
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(a)

(b)

Fig. 5 Examples of true negatives when using 100 annotated images. Left column: gastric X-ray images. Middle column: heat
maps of the probability for non-gastritis. Right column: overlapped images.
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(a)

(b)

Fig. 6 Examples of false negatives when using 100 annotated images. Left column: gastric X-ray images. Middle column: heat
maps of the probability for non-gastritis. Right column: overlapped images.
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(a)

(b)

Fig. 7 Examples of false positives when using 100 annotated images. Left column: gastric X-ray images. Middle column: heat
maps of the probability for gastritis. Right column: overlapped images.


