Skip to main content
Log in

Age-related changes in mechanical properties of human abdominal fascia

  • Original Article
  • Published:
Medical & Biological Engineering & Computing Aims and scope Submit manuscript

Abstract

The purpose of this study is to assess and model age-related changes in the mechanical properties of human fascia. The samples were divided into three age groups: group A—up to 60 years (mean age 52.5 ± 6 years), group B—61–80 years (mean age 70.4 ± 5.2 years), and group C—81–90 years (mean age 83.2 ± 2 years). A uniaxial tensile test was applied to fascia specimens cut perpendicular and parallel to fibers. The secant modulus at 5% strain, the maximum stress, and the stretch at maximum stress were calculated from the stress-stretch ratio curves. The results indicated an increase in the secant modulus with the increased age. The trend is clearer in the longitudinal direction. Considering the strain energy function which accounts the isotropic and non-isotropic response of the fascia where isotropic and anisotropic parts are split, we evaluated which material model is the most suitable to present isotropic mechanical behavior of the tissue. The experimental stress-stretch ratio curves were approximated using Mooney-Rivlin, Yeoh, and neo-Hookean strain energy functions and a good match between theoretical and experimental results was obtained. On the basis of objective function values and normalized mean square root error, we recommend using the Yeoh model to describe the isotropic mechanical behavior of human abdominal fascia.

.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Ben Abdelounis H, Nicolle S, Ottenio M, Beillas P, Mitton D (2013) Effect of two loading rates on the elasticity of the human anterior rectus heath. J Mech Behav Biomed Mater 20:1–5. https://doi.org/10.1016/j.jmbbm.2012.12.002

    Article  CAS  PubMed  Google Scholar 

  2. Förstemann T, Trzewik J, Holste J, Batke B, Konerding MA, Wolloscheck T, Hartung C (2011) Forces and deformations of the abdominal wall – a mechanical and geometrical approach to the linea alba. J Biomech 44(4):600–606. https://doi.org/10.1016/j.jbiomech.2010.11.021

    Article  PubMed  Google Scholar 

  3. Martins P, Pena E, Jorge RM, Santos A, Santos L, Mascarenhas T, Calvo B (2012) Mechanical characterization and constitutive modelling of the damage process in rectus sheath. J Mech Behav Biomed Mater 8:111–122. https://doi.org/10.1016/j.jmbbm.2011.12.005

    Article  CAS  PubMed  Google Scholar 

  4. Podwojewski F, Ottenio M, Beillas P, Guerin G, Turquier F, Mitton D (2014) Mechanical response of human abdominal walls ex vivo: effect of an incisional hernia and a mesh repair. J Mech Behav Biomed Mater 38:126–133. https://doi.org/10.1016/j.jmbbm.2014.07.002

    Article  CAS  PubMed  Google Scholar 

  5. Tran D, Podwojewski F, Beillas P, Ottenio M, Voirin D, Turquier MD (2016) Abdominal wall muscle elasticity and abdomen local stiffness on healthy volunteers during various physiological activities. J Mech Behav Biomed Mater 60:451–459. https://doi.org/10.1016/j.jmbbm.2016.03.001

    Article  CAS  PubMed  Google Scholar 

  6. Song C, Alijani A, Frank T, Hanna G, Cuschieri A (2006) Elasticity of the living abdominal wall in laparoscopic surgery. J Biomech 39(3):587–591. https://doi.org/10.1016/j.jbiomech.2004.12.019

    Article  PubMed  Google Scholar 

  7. Szymczak C, Lubowiecka I, Tomaszewska A, Smietanski M (2012) Investigation of abdomen surface deformation due to life excitation: implications for implant selection and orientation in laparoscopic ventral hernia repair. Clin Biomech 27(2):105–110. https://doi.org/10.1016/j.clinbiomech.2011.08.008

    Article  Google Scholar 

  8. Hernandez B, Pena E, Pascual G, Rodrıguez M, Calvo B, Doblare M, Bellon JM (2011) Mechanical and histological characterization of the abdominal muscle. A previous step to modelling hernia surgery. J Mech Behav Biomed Mater 4(3):392–404. https://doi.org/10.1016/j.jmbbm.2010.11.012

    Article  CAS  PubMed  Google Scholar 

  9. Hernández-Gascón B, Mena A, Peña E, Pascual G, Bellón JM, Calvo B (2013) Understanding the passive mechanical behavior of the human abdominal wall. Ann Biomed Eng 41(2):433–444. https://doi.org/10.1007/s10439-012-0672-7

    Article  PubMed  Google Scholar 

  10. Findley T, Schleip R (2007) Fascia research, basic science and implications for conventional and complementary health care. Elsevier GmbH, Urban & Fischer

  11. Axer H, Keyserlingk DG, Graft D, Prescher A (2001) Collagen fibers in linea alba and rectus sheaths: II. Variability and biomechanical aspects. J Surg Res 96:239–245. https://doi.org/10.1006/jsre.2000.6071

    Article  CAS  PubMed  Google Scholar 

  12. Yahia LH, Pigeon P, DesRosiers EA (1993) Viscoelastic properties of the human lumbodorsal fascia. J Biomed Eng 15(5):425–429. https://doi.org/10.1016/0141-5425(93)90081-9

    Article  CAS  PubMed  Google Scholar 

  13. Black J, Hastings G (1998) Handbook of biomaterial properties. Chapman & Hall, London

    Book  Google Scholar 

  14. Petrov N, Mechkarski S (1977) Investigation of mechanical properties of tissue transplantants. Biomechanics (Sofia) 5:25–31

    Google Scholar 

  15. Zeng Y, Sun X, Yang J, Wu W, Xu X, Yan Y (2003) Mechanical properties of nasal fascia and periosteum. Clin Biomech 18(8):760–764. https://doi.org/10.1016/S0268-0033(03)00136-0

    Article  Google Scholar 

  16. Kirilova M, Stoytchev S, Pashkouleva D, Kavardzhikov V (2011) Experimental study of mechanical properties of human abdominal fascia. J Med Engin Phys 33:1–6. https://doi.org/10.1016/j.medengphy.2010.07.017

    Article  Google Scholar 

  17. Kirilova M, Popov A, Pashkouleva D, Stoytchev S (2007) Processing of experimentas results for mechanical behavior of human fascia using statistical methods. Proc. of the Thirty Sixth Spring Conference of the Union of Bulgarian Mathematicians, Varna, Bulgaria, 101–106. http://www.imbm.bas.bg/uploads/pdfs/papers/MK/SMB2007.pdf

  18. Holzapfel GA, Weizsacker HW (1998) Biomechanical behavior of the arterial wall and its numerical characterization. Comput Biol Med 28(4):377–392. https://doi.org/10.1016/S0010-4825(98)00022-5

    Article  CAS  PubMed  Google Scholar 

  19. Holzapfel GA, Gasser TC, Ogden RW (2000) A new constitutive framework for arterial wall mechanics and a comparative study of material models. J Elast Phys Sci Solids 61:1–48. https://doi.org/10.1023/A:101083531

    Article  Google Scholar 

  20. Ruiz-Alejos D, Peña JA, Pérez MM, Peña E (2016) Experiments and constitutive model for deep and superficial fascia. Digital image correlation and finite element validation. Strain 52(5):436–445. https://doi.org/10.1111/str.12198

    Article  Google Scholar 

  21. Demiray H (1976) Stresses in ventricular wall. J Appl Mech 43(2):194–197. https://doi.org/10.1115/1.3423806

    Article  Google Scholar 

  22. Fung YC, Perrone N, Anliker M (1972) Biomechanics: its foundations and objectivs. Prentice Hall, Englewood Cliffs

    Google Scholar 

  23. Shahzad M, Kamran A, Siddiqui M, Farhan M (2015) Mechanical characterization and FE modeling of a hyperelastic material. Mat Res 18(5):918–924. https://doi.org/10.1590/1516-1439.320414

    Article  CAS  Google Scholar 

  24. Hoss L, Marczak RJ (2010) A new constitutive model for rubber-like materials. Mecánica Comput XXIX(28):2759–2773. .https://www.researchgate.net/publication/284654375_A_new_constitutive_model_for_rubber-like_materials

  25. Bhattarai A, Frotscher R, Staat M (2015) Biomechanical study of the female pelvic floor dysfunction using the finite element method. 3rd ECCOMAS Young Investigators Conference, 6th GACM Colloquium, At Aachen, Germany. https://www.academia.edu/19632757/Biomechanical_study_of_the_female_pelvic_floor_dysfunction_using_the_finite_element_method

  26. Brandão S, Parente M, Mascarenhas T, daSilva AR, Ramos I, Jorge RN (2015) Biomechanical study on the bladder neck and urethral positions: simulation of impairment of the pelvic ligaments. J Biomech 48:217–223. https://doi.org/10.1016/j.jbiomech.2014.11.045

    Article  PubMed  Google Scholar 

  27. Renaud C, Cros J, Feng Z, Yang B (2009) The Yeoh model applied to the modeling of large deformation contact/impact problems. Int J Impact Eng 36(5):659–666. https://doi.org/10.1016/j.ijimpeng.2008.09.008

    Article  Google Scholar 

  28. Morrow DA, Donahue TH, Odegard GM, Kaufman KR (2010) A method for assessing the fit of a constitutive material model to experimental stress–strain data. Comput Methods Biomech Biomed Engin 13(2):247–256. https://doi.org/10.1080/10255840903170686

    Article  PubMed  PubMed Central  Google Scholar 

  29. Kureshi A, Vaiude P, Nazhat SN, Petrie A, Brown RA (2008) Matrix mechanical properties of transversalis fascia in inguinal herniation as a model for tissue expansion. J Biomech 41(16):3462–3468. https://doi.org/10.1016/j.jbiomech.2008.08.018

    Article  PubMed  Google Scholar 

  30. Minns R, Tinckler L (1976) Structural and mechanical aspects of prosthetic Herniorrhaphy. J Biomech 9(7):435–438. https://doi.org/10.1016/0021-9290(76)90085-3

    Article  CAS  PubMed  Google Scholar 

  31. Wolloscheck T, Gaumann A, Terzic A, Heintz A, Jungiger T, Konerding MA (2004) Inguinal hernia: measurement of the biomechanics of the lower abdominal wall and the inguinal canal. Hernia. 8(3):233–241. https://doi.org/10.1007/s10029-004-0224-7

    Article  CAS  PubMed  Google Scholar 

  32. Viidik A (1966) Biomechanics and functional adaptation of tendons and joint ligaments. In: Evans FG (ed) Studies on the anatomy and function of bone and joints. Springer, Berlin

    Google Scholar 

  33. Bell R, Hoshizaki T (1981) Relationships of age and sex with range of motion of seventeen joint actions in humans. Can J Appl Sport Sci 6(4):202–206

    CAS  PubMed  Google Scholar 

  34. Grimston S, Nigg B, Hanley D, Engsberg JR (1993) Differences in ankle joint complex range of motion as a function of age. Foot Ankle Intern 14(4):215–222. https://doi.org/10.1177/107110079301400407

    Article  CAS  Google Scholar 

  35. Trindade VL, Martins PA, Santos S, Parente MP, Natal Jorge RM, Santos A, Santos L, Fernandes JM (2012) Experimental study of the influence of senescence in the biomechanical properties of the temporal tendon and deep temporal fascia based on uniaxial tension tests. J Biomech 45(1):199–201. https://doi.org/10.1016/j.jbiomech.2011.09.018

    Article  CAS  PubMed  Google Scholar 

  36. Wilke J, Macchi V, De Caro R, Stecco C (2019) Fascia thickness, aging and flexibility: is there an association? J Anat 234:43–49. https://doi.org/10.1111/joa.12902

    Article  PubMed  Google Scholar 

  37. Rivaux G, Rubod C, Dedet B, Brieu M, Gabriel B, Cosson M (2013) Comparative analysis of pelvic ligaments: a biomechanics study. Int Urogynecol J 24(1):135–139. https://doi.org/10.1007/s00192-012-1861-5

    Article  PubMed  Google Scholar 

  38. Gatton ML, Pearcy MJ, Pettet GJ, Evans JH (2010) A three-dimensional mathematical model of the thoracolumbar fascia and an estimate of its biomechanical effect. J Biomech 43(14):2792–2797. https://doi.org/10.1016/j.jbiomech.2010.06.022

    Article  CAS  PubMed  Google Scholar 

  39. Chaudhry H, Bukiet B, Ji Z, Stecco A, Findley TW (2014) Deformations experienced in the human skin, adipose tissue, and fascia in osteopathic manipulative medicine. J Am Osteopath Assoc 114(10):780–787. https://doi.org/10.7556/jaoa.2014.152

    Article  PubMed  Google Scholar 

  40. Shazly T, Rachev A, Lessner S, Argraves WS, Ferdous J, Zhou B, Moreira AM, Sutton M (2015) On the uniaxial ring test of tissue engineered constructs. Exp Mech 55(1):41–51. https://doi.org/10.1007/s11340-014-9910-2

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miglena Kirilova-Doneva.

Ethics declarations

Ethical approval

All procedures performed in studies were in accordance with the ethical standards of the institutional Ethics Committee at Bulgarian Academy of Sciences (reference number N36/24.02.2016) and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kirilova-Doneva, M., Pashkouleva, D. & Stoytchev, S. Age-related changes in mechanical properties of human abdominal fascia. Med Biol Eng Comput 58, 1565–1573 (2020). https://doi.org/10.1007/s11517-020-02172-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11517-020-02172-2

Keywords

Navigation